°ÄÃÅÁùºÏ²Ê¸ßÊÖ

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization publication(s) that you have requested. °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization.

For more information, see our Privacy policy.

News & Media

Latest °ÄÃÅÁùºÏ²Ê¸ßÊÖ Newsline

  • Fusion supply chain | A glimpse into the future for commercial fusion reactors

    Most of the USD 7 billion in investment in private fusion initiatives has gone to companies that are building devices from the ground up. But recently, another [...]

    Read more

  • Outreach | °ÄÃÅÁùºÏ²Ê¸ßÊÖ @ October science festivals

    Every October, before schools pause for two weeks of holiday, towns and cities in France open their municipal spaces to scientific experts of all stripes who ar [...]

    Read more

  • Image of the week | °ÄÃÅÁùºÏ²Ê¸ßÊÖ Director-General visits Russia

    The °ÄÃÅÁùºÏ²Ê¸ßÊÖ Director-General was in Russia last week, meeting with stakeholders and holding technical meetings with colleagues in Moscow and Saint Petersburg. As [...]

    Read more

  • Image of the Week | Sector 5 is on its way

    The first vacuum vessel sector produced in Europe travelled last week between Monfalcone, Italy, and the French port of Fos-sur-Mer. The 440-tonne component had [...]

    Read more

  • Anniversary | °ÄÃÅÁùºÏ²Ê¸ßÊÖ Document Management system turns 20

    Whatever its nature, every large project generates huge numbers of documents. And when project collaborators operate from different countries, as was the case f [...]

    Read more

Of Interest

See archived entries

Central solenoid

Module #1 nears completion

US °ÄÃÅÁùºÏ²Ê¸ßÊÖ and contractor General Atomics recently achieved a major milestone in the fabrication of the °ÄÃÅÁùºÏ²Ê¸ßÊÖ central solenoid, completing vacuum pressure impregnation (VPI) on the first production module. The VPI process is the penultimate step of fabrication that turns almost 6 km of carefully wound superconducting conductor into a structurally strong, electrically insulated electromagnet.
The module fabrication team at the General Atomics Magnet Technology Center in Poway, California. Six stacked modules will form the 1,000-tonne central solenoid magnet. Photo: GA (Click to view larger version...)
The module fabrication team at the General Atomics Magnet Technology Center in Poway, California. Six stacked modules will form the 1,000-tonne central solenoid magnet. Photo: GA
"Completion of VPI is a critical step in the process and the team worked diligently and with great care to insure its success," said John Smith, project manager for General Atomics. "The first production unit now looks like a central solenoid module, and it won't be too much longer before it is complete and begins to function as one."

The central solenoid, often called the "heart of °ÄÃÅÁùºÏ²Ê¸ßÊÖ," is essential for operation, serving to initiate plasma and generate the necessary current for plasma heating and sustainment. Six modules will be stacked to form the 1,000-tonne central solenoid, which will be the largest pulsed superconducting magnet in the world when it is complete. General Atomics is under contract to US °ÄÃÅÁùºÏ²Ê¸ßÊÖ to fabricate the six modules plus one spare.

During vacuum pressure impregnation, the team evacuates a rigid mold encasing the coil and injects a three-part epoxy mixture to impregnate the insulation materials wrapped around each conductor turn, plus the ground insulation around the module itself. The epoxy provides both electrical insulation and structural support to the module. In a final fabrication step, piping is added and the assembly undergoes final testing.

Fabrication of the modules began in 2016 at the General Atomics Magnet Technologies Center in Poway, California. The manufacturing process takes approximately 22-24 months per module plus an additional 5-6 months of testing. Five modules are currently in various stages of production.

General Atomics has been a pioneer in fusion research and development for over 50 years and is also home to the DIII-D National Fusion Facility, funded by the Department of Energy through the Office of Fusion Energy Sciences.


return to the latest published articles