°ÄÃÅÁùºÏ²Ê¸ßÊÖ

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization publication(s) that you have requested. °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization.

For more information, see our Privacy policy.

News & Media

Latest °ÄÃÅÁùºÏ²Ê¸ßÊÖ Newsline

  • Fusion supply chain | A glimpse into the future for commercial fusion reactors

    Most of the USD 7 billion in investment in private fusion initiatives has gone to companies that are building devices from the ground up. But recently, another [...]

    Read more

  • Outreach | °ÄÃÅÁùºÏ²Ê¸ßÊÖ @ October science festivals

    Every October, before schools pause for two weeks of holiday, towns and cities in France open their municipal spaces to scientific experts of all stripes who ar [...]

    Read more

  • Image of the week | °ÄÃÅÁùºÏ²Ê¸ßÊÖ Director-General visits Russia

    The °ÄÃÅÁùºÏ²Ê¸ßÊÖ Director-General was in Russia last week, meeting with stakeholders and holding technical meetings with colleagues in Moscow and Saint Petersburg. As [...]

    Read more

  • Image of the Week | Sector 5 is on its way

    The first vacuum vessel sector produced in Europe travelled last week between Monfalcone, Italy, and the French port of Fos-sur-Mer. The 440-tonne component had [...]

    Read more

  • Anniversary | °ÄÃÅÁùºÏ²Ê¸ßÊÖ Document Management system turns 20

    Whatever its nature, every large project generates huge numbers of documents. And when project collaborators operate from different countries, as was the case f [...]

    Read more

Of Interest

See archived entries

Industrial milestone

US °ÄÃÅÁùºÏ²Ê¸ßÊÖ ready to deliver first central solenoid module

This week the "beating heart" of °ÄÃÅÁùºÏ²Ê¸ßÊÖ—the central solenoid, the largest of °ÄÃÅÁùºÏ²Ê¸ßÊÖ's magnets—will take the first step in the final lap of a decade-long journey. Over the next few days, it will be loaded onto a special heavy transport vehicle at General Atomics near San Diego, California, bound for the port of Houston, where it will be re-loaded onto a ship bound for Marseille. By early September, it will reach its final destination, the °ÄÃÅÁùºÏ²Ê¸ßÊÖ worksite, where it will meet the rest of the superconducting "°ÄÃÅÁùºÏ²Ê¸ßÊÖ magnet family" and take its place in the machine.

The General Atomics fabrication team poses in front of the first two modules of the central solenoid. Module 1, at right, is packaged for shipment. Module 2, at left, will be shipped later this summer. Courtesy General Atomics. (Click to view larger version...)
The General Atomics fabrication team poses in front of the first two modules of the central solenoid. Module 1, at right, is packaged for shipment. Module 2, at left, will be shipped later this summer. Courtesy General Atomics.
Creating the magnetic cage that will shape and control the °ÄÃÅÁùºÏ²Ê¸ßÊÖ fusion plasma calls for three primary magnet arrays: the D-shaped vertical array of "toroidal field coils," the horizontal layer of ring-shaped "poloidal field coils," and the central solenoid positioned in the central axis.

The unique role of the central solenoid is to direct a pulse of current in the plasma that circulates around the torus—hence the "beating heart" moniker. But this is no normal heartbeat. The size and strength of °ÄÃÅÁùºÏ²Ê¸ßÊÖ's central solenoid—a stack of six modules, plus support structures, that together boast a height of 18 metres, a weight of more than a thousand tonnes, and a magnetic field strength of 13 Tesla at its core—will enable a current of 15 million amperes in 400-second pulses, more powerful and more sustained than any previous tokamak.

To manufacture this behemoth, General Atomics created the Magnet Technologies Center as a fit-for-purpose facility. After a four-year collaboration with US °ÄÃÅÁùºÏ²Ê¸ßÊÖ on the design and tooling, fabrication of the first module started in 2015.

Each module required more than two years of precision fabrication, carefully winding more than 5 kilometres of steel-jacketed niobium-tin superconducting cable into precise flat discs, then splicing together enough discs to create the full module. Five weeks of heat treatment followed: baking the module evenly in a giant convection-style furnace. Delicately stretching the module coils—much like a giant Slinky toy—allowed the individual turns to be wrapped in fiberglass-Kapton insulation to avoid electrical shorting across the windings. And finally, with the module inserted into a special mould, 3,800 litres of epoxy resin were injected under vacuum, saturating the insulation material, eliminating bubbles, and fusing the module into a structural whole.

In February, the first module passed a demanding series of tests; but it waited on standby as the second module was run through a similar series, as an extra precaution to allow any lessons learned to be applied.

And now, freshly wrapped for travel over land and sea, Module 1 is heading off to take its place as the first of its kind at °ÄÃÅÁùºÏ²Ê¸ßÊÖ. Six more modules (one as a spare) will follow in a series, all of them to be installed in 2023-2024. And not so long after that, °ÄÃÅÁùºÏ²Ê¸ßÊÖ's scientists will stand by anxiously as their colossal newborn generates its first heartbeat.

To view the making of the central solenoid, see this video from General Atomics.

Read more about the fabrication process in this booklet.



return to the latest published articles