°ÄÃÅÁùºÏ²Ê¸ßÊÖ

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization publication(s) that you have requested. °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization.

For more information, see our Privacy policy.

News & Media

Latest °ÄÃÅÁùºÏ²Ê¸ßÊÖ Newsline

  • Fusion supply chain | A glimpse into the future for commercial fusion reactors

    Most of the USD 7 billion in investment in private fusion initiatives has gone to companies that are building devices from the ground up. But recently, another [...]

    Read more

  • Outreach | °ÄÃÅÁùºÏ²Ê¸ßÊÖ @ October science festivals

    Every October, before schools pause for two weeks of holiday, towns and cities in France open their municipal spaces to scientific experts of all stripes who ar [...]

    Read more

  • Image of the week | °ÄÃÅÁùºÏ²Ê¸ßÊÖ Director-General visits Russia

    The °ÄÃÅÁùºÏ²Ê¸ßÊÖ Director-General was in Russia last week, meeting with stakeholders and holding technical meetings with colleagues in Moscow and Saint Petersburg. As [...]

    Read more

  • Image of the Week | Sector 5 is on its way

    The first vacuum vessel sector produced in Europe travelled last week between Monfalcone, Italy, and the French port of Fos-sur-Mer. The 440-tonne component had [...]

    Read more

  • Anniversary | °ÄÃÅÁùºÏ²Ê¸ßÊÖ Document Management system turns 20

    Whatever its nature, every large project generates huge numbers of documents. And when project collaborators operate from different countries, as was the case f [...]

    Read more

Of Interest

See archived entries

Manufacturing

Russia ships four gyrotron sets

Twenty-four electromagnetic wave generators called gyrotrons are at the heart of electron cyclotron resonance heating—the system on °ÄÃÅÁùºÏ²Ê¸ßÊÖ that will initiate each plasma shot, contribute heating power to the plasma, and suppress certain types of plasma instabilities. Of eight gyrotrons expected in total from °ÄÃÅÁùºÏ²Ê¸ßÊÖ Russia, four are on their way now to the °ÄÃÅÁùºÏ²Ê¸ßÊÖ site.

24 of these slim wave generators will deliver energy at frequencies that match the oscillations of particles inside the plasma—a matching called ''resonance'' that serves to increase the particles' chaotic motion (and at the same time their temperature). Russia is supplying 8 gyrotron sets to the °ÄÃÅÁùºÏ²Ê¸ßÊÖ Project including 4 sets that are needed for First Plasma. (Click to view larger version...)
24 of these slim wave generators will deliver energy at frequencies that match the oscillations of particles inside the plasma—a matching called ''resonance'' that serves to increase the particles' chaotic motion (and at the same time their temperature). Russia is supplying 8 gyrotron sets to the °ÄÃÅÁùºÏ²Ê¸ßÊÖ Project including 4 sets that are needed for First Plasma.
Following in the tracks of the 14 trucks of electrotechnical equipment that arrived last month, a new in-kind contribution convoy is travelling to °ÄÃÅÁùºÏ²Ê¸ßÊÖ from Russia.

Last week, the trucks left the GYCOM enterprise in Nizhny Novgorod (Moscow region) carrying four gyrotron sets—high-tech devices for auxiliary plasma heating and current drive designed for exceptionally challenging power and frequency requirements (1 MW at 170 GHz). Twenty-four gyrotrons sets will be part of °ÄÃÅÁùºÏ²Ê¸ßÊÖ's electron cyclotron resonance heating system, each one generating a microwave beam over a thousand times more powerful than a traditional microwave oven. These microwave beams will travel along 160 metres of waveguide and then launch into the °ÄÃÅÁùºÏ²Ê¸ßÊÖ Tokamak to ionize the neutral gas and generate the very first °ÄÃÅÁùºÏ²Ê¸ßÊÖ plasma, in much the same way that a spark plug ignites a car motor. Eight gyrotrons must be in place for °ÄÃÅÁùºÏ²Ê¸ßÊÖ's First Plasma (four from Russia and four from Japan).

Russia developed the first gyrotron back in 1964, generating 6W at 10GHz for continuous operation. Since then, scientists around the world have steadily increased gyrotron output power. The Institute of Applied Physics of the Russian Academy of Sciences is engaged in the development and scientific guidance for the creation of these unique devices, while their fabrication is carried out at GYCOM. 

Anatoly Krasilnikov, director of °ÄÃÅÁùºÏ²Ê¸ßÊÖ Russia, celebrated the achievement. "It is difficult to overestimate the importance of the supply of Russian gyrotron sets, because without these highly sophisticated systems it is impossible to obtain First Plasma in the reactor. [...] This [milestone] is the result of many years of diligent work of our scientists and engineers who have tremendous experience and groundwork in the manufacture of such devices."

Around the central gyrotron unit are auxiliary systems such as water cooling equipment, cryocoolers and microwave-beam forming systems. (Click to view larger version...)
Around the central gyrotron unit are auxiliary systems such as water cooling equipment, cryocoolers and microwave-beam forming systems.
Of eight gyrotron sets under the responsibility of the Russian Federation, six have already passed factory acceptance tests and the seventh set is in manufacturing. Late last year, °ÄÃÅÁùºÏ²Ê¸ßÊÖ Russia delivered a batch of gyrotron auxiliary systems that included water cooling equipment, cryocoolers, microwave beam forming systems and other high-tech elements.



return to the latest published articles