












































Euler-Lagrange equations, electrostatic H

� With the simple Lagrangian:
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where a drift tensor notation for the background magnetic �eld has



Euler-Lagrange equations, no tensors



Tensor formalism emphasizes symmetries
� The previous equation can be cast in the form of an
antisymmetric generalised bracket [Scott 2010]:
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having de�nedG � � � A � .
� This structure has the form of a triple bracket:

[H; Gab; f ]azb =
@Gab

@pk
[H; f ]ab + ( r aGab)[H; f ]bz + ( r bGab)[H; f ]za

ab are pairs of spatial indices,z denotes thepk coordinate.
� The two-bracket form is

[H; f ]ab = H;af;b � H;bf;a

g;a denotes di�erentiation with respect to variable with indexa.



Vlasov equation has a symmetric form

� A � has nopk component:
additional �ctitious 3-brackets can be added, leading to a
remarkably symmetric expression for the gyrokinetic Vlasov
equation.
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where Einstein summation convention is assumed.
� abcz is the antisymmetric rank-four Levi-Civita pseudotensor.

� The antisymmetric bracket form of the GK Vlasov equations
allows for straightforward conservation of several quantities,



Field equation: Polarisation equation
� Functional derivative ofL with respect to �:
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which implies, with some algebra,
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the J0 operator must be Hermitian.
� The arbitrariness of� � implies:
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Field equation: Polarisation equation

� dpkd� commutes withr :
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n0 is the density associated with the equilibrium MaxwellianfM .

� The polarization equation clari�es the approximations made:

1) It is a linear equation.

2) It has the form of
P

sp ensp = 0, where ensp is the particle
density, i.e. a quasi-neutrality condition.





Global energy conservation equation

� Finally:
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� The Hamiltonian is the global energy.
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Global energy conservation, electrostatic case@
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� It can be easily veri�ed, using the Euler-Lagrange equations, that
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Power balance equation in CYCLONE, nonlinear PIC

� CYCLONE base case: DIII-D (circular) equilibrium.



Power balance is a powerful tool
�





Instantenous growth rate for ITG modes, nonlinear



Summary: electrostatic, linear polarization GK equations
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� Energetic consistency: the same Hamiltonian must be used to
construct the polarization equation and the gyrokinetic Vlasov
equations.
� This also implies that the approximations made cannot be
relaxed once the equations have been derived.



Energetic consistency can be easily broken
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Energetic consistency is broken:
� nonlinear polarization implies using (H0 + H1 + H2)f in the
Lagrangian for �eld equations;
! second order terms must be included in the Euler-Lagrange
equations.





PIC discretization

� f is approximated by a sum ofN markers, each de�ned by a
position in phase-space (R(t ); pk(t ); � ) and a weightw.

f ’ fN (R(t ); pk(t ); � ) =
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wk � (R� Rk (t )) � (pk � pkk (t )) � (� � � k )

� The weightswk are time independent (replacef in Vlasov eq...).

� The weights are distributed accordingly to a certain probability
density functiong (importance sampling).



Euler-Lagrange equations, time evolution
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The gyroaverage operatorJ0 has the form of Bessel-J0
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� J0 has the form, in Fourier space, of a multiplication of Fourier
coe�cients by the zeroth Bessel functionsJ0(k? � i ).



The gyroaveraged electrostatic potentialJ0�
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BesselJ0 smooths out small variations

� J0 acts as a smoothing operator on �.



BesselJ0 smooths out small variations

� J0 acts as a smoothing operator on �.









Polarization (Poisson) equation, B-splines
The polarisation equation is solved using �nite elements:

�( x; t ) =
X

�

� � (t )� � (x)

Where � � (t ) are real numbers, and �� (x) = � j (x1)� k (x2)� l (x3) is
a 3D product of polynomial basis functions (cubic B-splines).

























Variance reduction techniques (Monte-Carlo)

� Very long simulations; Di�erent heat sources! di�erent 
uxes.



Convergence in number of markers N
� Radial averaged heat 
uxes or electrostatic potentials are very
robust... not a good choice.
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Spectra give good insights on the quality of the simulation
� Time averaged spectrum: nonzonal electrostatic potential



Density 
uctuation spectrum, slow converge in N

� Time averaged spectrum: density 
uctuation






