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Macroscopic Instabilities

e Two main types of macroscopic instabilities in tokamaks: ?

— Catastrophic “ideal” ( e., non-reconnecting) instabilities,
which disrupt plasma in few micro-seconds. Can be avoided by
limiting plasma pressure and current.

— Slowly growing “tearing” instabilities, which reconnect
magnetic flux-surfaces to form ma®ne; c slands, thereby
degrading their confinement properties. Much harder to avoid.

aMHD Instabilities, G. Bateman (MIT, 1978).
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/ Magnetic Islands \

Resonant Surface Magnetic Island

POLOIDAL
CROSS-SECTION

Magnetic Flux-Surface

e Helical structures, centered on a;onal ma®ne;c {jux su faces
which satisfy k- B = 0, where k is wavenumber of mode, and B is

equilibrium magnetic field.

e E ectively “short-circuit” confinement by allowing heat/particles
to radially transit island region by rapidly flowing along magnetic
\ field-lines, rather than slowly di using across flux-surfaces. /
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Need for Magnetic Island Theory

= Magnetic island formation associated with non/ nea phase of
tearing mode growth ( .e., when radial island width becomes
greater than linear layer width at rational surface).

e |In very hot plasmas found in modern-day tokamaks, linear layers
so thin that tearing mode already in nonlinear regime when first
detected.

e Linear tearing mode theory largely irrelevant. Require nonlinear
magnetic island theory to explain experimental observations.
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MHD Theory

e Tearing modes are macroscopic instabilities which a ect whole

plasma. Natural to investigate them using some form of
fud ;"eo y.

e Simplest fluid theory is well-known ma#neo"yd odynam cal
app ox ma;on,® which e ectively treats plasma as s n#/e {ju d.

e Shall also use sla# app ox ma;on to simplify analysis.

aPlasma Confinement, R.D. Hazeltine, and J.D. Meiss (Dover, 2003).
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Slab Approximation

rational surface

\ B, A
A




Slab Model

Cartesian coordinates: (X, Yy, z). Let 9/0z = 0.
Assume presence of dominant uniform *“toroidal’ B,7
All field-strengths normalized to B..

All lengths normalized to equilibrium magnetic shear-length:
Ls = BZ/B)’,(O).

All times normalized to shear-Alfvéen time calculated with B..
Perfect wall boundary conditions at x = *a.

Wavenumber of tearing instability: k= (0, k,0), so k-B=0 at
X = 0. Hence, rational surface at x = 0.
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Outer Region

e |n “outer region”, which comprises most of plasma, non-linear,
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Inner Region
e “Inner region” centered on rational surface, x = 0. Of extent,
W 1, where W is magnetic island width (in x).

e In inner region, non-ideal e ects, non-linear e ects, and plasma
Inertia can all be important.

e |nner solution must be asymptotically matched to outer solution
already obtained.

\_
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Constant-y) Approximation

e Y1) (x) generally does not vary significantly in x over inner region:
W W) —gHo) W o).

e Consian; ) app ox majon: treat Y1) (x) as constant in x













MHD Flow - 11
e Let 4
_J@
M(yp) = v’
e Easily shown that
Vy =X M.

e By symmetry, M(W) is odd function of x. Hence,
M=0

Inside separatrix: .e., no flow inside separatrix in island frame.
Plasma ; apped within magnetic separatrix.

\_ /
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Note that

as |X|/W — oo.

MHD Flow - IV

Vy =XM — [X| Mg

V-shaped velocity profile which extends over whole plasma.

Expect sola;ed magnetic island to have /ocal zed velocity profile.
Suggests that Mg = 0 for isolated island.

Hence, zero MHD flow in island frame: e, island propagates at

local







/

Rutherford Equation - |

e Asymptotic matching between inner and outer regions yields:

A’LP:—4J JcosO dy.
+W
e In island frame, in absence of MHD flow, vorticity equation
reduces to
J, ¢l 0.
e Hence,
J=J(y).

\_
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e Ohm’s law:

Rutherford Equation - 1l

dv cos
dt
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Rutherford Equation - IV

e Higher order asymptotic matching between inner and outer
regions yields: ?

4 (0) 4
0.823 dW A 0.41 - d B?,O)/dx W,
n dt d2By '/dx2 )

e Hence, saturated (d/dt = 0) island width is

W
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MHD Theory: Summary

e Tearing mode unstable if A’ > 0.
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Drift-MHD Theory
In drift-MHD approximation, analysis retains c'a ¥ed pa ;cle d f;
veloc t es, in addition to E x B velocity.
Essentially two-fluid theory of plasma.

Characteristic length-scale, p, Is on La mo ad us calculajed y ;"

elec; on jempe au e.
Characteristic velocity is diamagnetic velocity, V., where

neV, xXB




Basic Assumptions

e Retain slab model, for sake of simplicity.

e Assume parallel electron heat transport su ciently strong that
Te — Te(l-p)-

e Assume Tj/Te = T = constant, for sake of simplicity.

\_
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/ Basic Definitions \

e Variables:
— I - magnetic flux-function.
— J - parallel current.
— (@ - guiding-center ( .e., MHD) stream-function.
— U - parallel ion vorticity.
— N - electron number density (minus uniform background).

— V, - parallel ion velocity.

e Parameters:
— o = (Ln/Ls)?, where Lp, is equilibrium density gradient
scale-length.
— N - resistivity. D - (perpendicular) particle di usivity. Uj/e -
\ (perpendicular) ion/electron viscosity. /
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Drift-MHD Equations - |

e Steady-state drift-MHD equations: @

P = —x?/2+Wcosh, U= 20,

0 = [@—n,P|l+nJd,

0 = [cp,U]—%{ “lonl+[U,nl+[ °n, @]}
+HL W+ H@+Tn)+pe H@—n),

0 = [@n+N+JWl+D *n,

0 = lo, V] +al
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e Symmetry:

Drift-MHD Equations - 1l
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Subsonic Islands 2

e To lowest order:
@ =0(Y), n=n(y).

e Follows that both electron stream-function, @ = @ — N, and ion
stream-function, @i = @ + tTn, are flux-surface functions. Both
electron and ion fluid flow constrained to follow flux-surfaces.
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Analysis - |

e Density equation reduces to

e Vorticity equation reduces to

0 [—MU— (1/2)(LU+ M °n) +J,y]

*

+ui He+Tn)+He o —n).

e Flux-surface average both equations, recalling that [A, ] = 0.
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Island Propagation \

As [X|/W — oo expect Vyexs — Ve — V, Where Vg is
unperturbed ( “e., no island) ExB velocity at rational surface (in
lab. frame), and V is island phase-velocity (in lab. frame).

Hence
(Mi T— He)
(1+71) (Mi + He)

But unperturbed ion/electron fluid velocities (in lab. frame):

V =Vgg +

Vi=Veg +1t/(1+71), Ve=Veg—1/(1+T71).

Hence

Mi Vi + He
Hi + He Hi + He
So, island phase-velocity is v scos |y Je¥"ied ave ave of
unperturbed ion/electron fluid velocities. /

V — Ve.
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Polarization Term - |

e Vorticity equation yields

1/, %2\ dM(M+TL)
e _(X_ 1) dy

5 + 1Y)

outside separatrix, where Jc is part of J with cos© symmetry.

e As before, flux-surface average of Ohm’s law yields:

dv
— | 1 =n 11— .
Je (W) n at cos©

e Hence

+N

du dt 1

(Xz_ X2 ) dM (M +TL)] _;d¥ cos6

/
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Polarization Term - 11

e Asymptotic matching between inner and outer regions yields:
AV = —4J Jc cosO duy.
+¥
e Evaluating flux-surface integrals, making use of previous solutions
for M and L
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Drift-MHD Theory: Summary
Results limited to large islands: e., large enough for sound waves
to flatten density profile.

Island propagates at (perpendicular) viscosity weighted average of
unperturbed (no island) ion and electron fluid velocities.

Bootstrap term in Rutherford equation is destabiizing.

Polarization term in Rutherford equation is stabilizing provided ion
(perpendicular) viscosity greatly exceeds electron (perpendicular)
viscosity (which is what we expect), and destabilizing otherwise.
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