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Macroscopic Instabilities

• Two main types of macroscopic instabilities in tokamaks: a

– Catastrophic “ideal” (i.e., non-reconnecting) instabilities,

which disrupt plasma in few micro-seconds. Can be avoided by

limiting plasma pressure and current.

– Slowly growing “tearing” instabilities, which reconnect

magnetic flux-surfaces to form magnetic islands, thereby

degrading their confinement properties. Much harder to avoid.

aMHD Instabilities, G. Bateman (MIT, 1978).
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Magnetic Islands

tearing modePOLOIDAL

Resonant Surface Magnetic Island

Magnetic Flux-Surface

CROSS-SECTION

• Helical structures, centered on rational magnetic flux-surfaces

which satisfy !k · !B = 0, where !k is wavenumber of mode, and !B is

equilibrium magnetic field.

• Effectively “short-circuit” confinement by allowing heat/particles

to radially transit island region by rapidly flowing along magnetic

field-lines, rather than slowly diffusing across flux-surfaces.
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Need for Magnetic Island Theory

• Magnetic island formation associated with nonlinear phase of

tearing mode growth (i.e., when radial island width becomes

greater than linear layer width at rational surface).

• In very hot plasmas found in modern-day tokamaks, linear layers

so thin that tearing mode already in nonlinear regime when first

detected.

• Linear tearing mode theory largely irrelevant. Require nonlinear

magnetic island theory to explain experimental observations.
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MHD Theory

• Tearing modes are macroscopic instabilities which affect whole

plasma. Natural to investigate them using some form of

fluid-theory.

• Simplest fluid theory is well-known magnetohydrodynamical

approximation,a which effectively treats plasma as single-fluid.

• Shall also use slab approximation to simplify analysis.

aPlasma Confinement, R.D. Hazeltine, and J.D. Meiss (Dover, 2003).
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Slab Approximation

y
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x = 0

rational surface
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Slab Model

• Cartesian coordinates: (x, y, z). Let ∂/∂z ≡ 0.

• Assume presence of dominant uniform “toroidal” !Bz !z.

• All field-strengths normalized to Bz.

• All lengths normalized to equilibrium magnetic shear-length:

Ls = Bz/B ′
y(0).

• All times normalized to shear-Alfvén time calculated with Bz.

• Perfect wall boundary conditions at x = ±a.

• Wavenumber of tearing instability: !k = (0, k, 0), so !k · !B = 0 at

x = 0. Hence, rational surface at x = 0.
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Outer Region

• In “outer region”, which comprises most of plasma, non-linear,
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Inner Region

• “Inner region” centered on rational surface, x = 0. Of extent,

W $ 1, where W is magnetic island width (in x).

• In inner region, non-ideal effects, non-linear effects, and plasma

inertia can all be important.

• Inner solution must be asymptotically matched to outer solution

already obtained.
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Constant-ψ Approximation

• ψ(1)(x) generally does not vary significantly in x over inner region:

|ψ(1)(W) − ψ(1)(0)| $ |ψ1(0)|.

• Constant-ψ approximation: treat ψ(1)(x) as constant in x
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MHD Flow - II

• Let

M(ψ) =
dφ

dψ
.

• Easily shown that

Vy = x M.

• By symmetry, M(ψ) is odd function of x. Hence,

M = 0

inside separatrix: i.e., no flow inside separatrix in island frame.

Plasma trapped within magnetic separatrix.
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MHD Flow - IV

• Note that

Vy = x M → |x| M0

as |x|/W → ∞.

• V-shaped velocity profile which extends over whole plasma.

• Expect isolated magnetic island to have localized velocity profile.

Suggests that M0 = 0 for isolated island.

• Hence, zero MHD flow in island frame: i.e., island propagates at

local !



!

"

#

$

V   −   V 



!

"

#

$

Rutherford Equation - I

• Asymptotic matching between inner and outer regions yields:

∆ ′ Ψ = −4

∫−∞

+Ψ

〈J cos θ〉 dψ.

• In island frame, in absence of MHD flow, vorticity equation

reduces to

[J, ψ] % 0.

• Hence,

J = J(ψ).
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Rutherford Equation - II

• Ohm’s law:
dΨ

dt
cos
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Rutherford Equation - IV

• Higher order asymptotic matching between inner and outer

regions yields: a

0.823

η

dW

dt
% ∆ ′ − 0.41

(

−
d4B

(0)
y /dx4

d2B
(0)
y /dx2

)

x=0

W.

• Hence, saturated (d/dt = 0) island width is

W
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MHD Theory: Summary

• Tearing mode unstable if ∆ ′ > 0.

•
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Drift-MHD Theory

• In drift-MHD approximation, analysis retains charged particle drift

velocities, in addition to !E × !B velocity.

• Essentially two-fluid theory of plasma.

• Characteristic length-scale, ρ, is ion Larmor radius calculated with

electron temperature.

• Characteristic velocity is diamagnetic velocity, V∗, where

n e !V∗ × !B
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Basic Assumptions

• Retain slab model, for sake of simplicity.

• Assume parallel electron heat transport sufficiently strong that

Te = Te(ψ).

• Assume Ti/Te = τ = constant, for sake of simplicity.
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Basic Definitions

• Variables:

– ψ - magnetic flux-function.

– J - parallel current.

– φ - guiding-center (i.e., MHD) stream-function.

– U - parallel ion vorticity.

– n - electron number density (minus uniform background).

– Vz - parallel ion velocity.

• Parameters:

– α = (Ln/Ls)
2, where Ln is equilibrium density gradient

scale-length.

– η - resistivity. D - (perpendicular) particle diffusivity. µi/e -

(perpendicular) ion/electron viscosity.
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Drift-MHD Equations - I

• Steady-state drift-MHD equations: a

ψ = −x2/2 + Ψ cos θ, U = ∇2φ,

0 = [φ − n, ψ] + η J,

0 = [φ, U] −
τ

2

{
∇2[φ, n] + [U, n] + [∇2n, φ]

}

+[J, ψ] + µi∇4(φ + τ n) + µe ∇4(φ − n),

0 = [φ, n] + [Vz + J, ψ] + D ∇2n,

0 = [φ, Vz] + α [
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Drift-MHD Equations - II

• Symmetry:
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Subsonic Islands a

• To lowest order:

φ = φ(ψ), n = n(ψ).

• Follows that both electron stream-function, φe = φ − n, and ion

stream-function, φi = φ + τ n, are flux-surface functions. Both

electron and ion fluid flow constrained to follow flux-surfaces.

)
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Analysis - I

• Density equation reduces to

0 % [Vz + J, ψ] + D ∇2n.

• Vorticity equation reduces to

0 %
[

−M U − (τ/2)(L U + M ∇2n) + J, ψ
]

+µi ∇4(φ + τ n) + µe ∇4(φ − n).

• Flux-surface average both equations, recalling that 〈[A, ψ]〉 = 0.
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Island Propagation

• As |x|/W → ∞ expect Vy E×B → VEB − V, where VEB is

unperturbed (i.e., no island) !E × !B velocity at rational surface (in

lab. frame), and V is island phase-velocity (in lab. frame).

• Hence

V = VEB +
(µi τ − µe)

(1 + τ) (µi + µe)
.

• But unperturbed ion/electron fluid velocities (in lab. frame):

Vi = VEB + τ/(1 + τ), Ve = VEB − 1/(1 + τ).

• Hence

V =
µi

µi + µe
Vi +

µe

µi + µe
Ve.

So, island phase-velocity is viscosity weighted average of

unperturbed ion/electron fluid velocities.
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Polarization Term - I

• Vorticity equation yields

Jc %
1

2

(

x2 −
〈x2〉
〈1〉

)

d[M (M + τ L)]

dψ
+ I(ψ)

outside separatrix, where Jc is part of J with cos θ symmetry.

• As before, flux-surface average of Ohm’s law yields:

〈Jc〉 = I(ψ)〈1〉 = η−1 dΨ

dt
〈cos θ〉.

• Hence

Jc %
1

2

(

x2 −
〈x2〉
〈1〉

)

d[M (M + τ L)]

dψ
+ η−1 dΨ

dt

〈cos θ〉
〈1〉

.
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Polarization Term - II

• Asymptotic matching between inner and outer regions yields:

∆ ′ Ψ = −4

∫−∞

+Ψ

〈Jc cos θ〉 dψ.

• Evaluating flux-surface integrals, making use of previous solutions

for M and L
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Drift-MHD Theory: Summary

• Results limited to large islands: i.e., large enough for sound waves

to flatten density profile.

• Island propagates at (perpendicular) viscosity weighted average of

unperturbed (no island) ion and electron fluid velocities.

• Bootstrap term in Rutherford equation is destabiizing.

• Polarization term in Rutherford equation is stabilizing provided ion

(perpendicular) viscosity greatly exceeds electron (perpendicular)

viscosity (which is what we expect), and destabilizing otherwise.
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