

Macroscopic Instabilities

Need for Magnetic Island Theory

- h ryhips sf h h yrhyi s h r yrs s thhihit r hg y h h h h r rg h h rsi g t^C t g
- Linring or the ry rgyrr ni Rqrnnnr gnicsnyth ryipn pr ni srins

Slab Model

• Ass prson f night from
$$\dot{B}_z \vec{Z}$$

• A ngths in r or t q r gints sh r ngth
$$L_s = B_z/B_y'(0).$$

• Prfc₁ is
$$yc_{0}$$
 is $x = \pm a$

• n r f t r ng nst ty
$$\vec{k} = (0, k, 0)$$
 s $\vec{k} \cdot \vec{B} = 0$ t
x = 0 on r t n s rfc t x = 0

Inner Region

- nnrrgnchr nrinsrfc X = 0 Of ind W 1 hr Ws gnc s n σr h h X
- hhrrghhh or hrich prini
- hhrsin Si Sypin y Ehoritirsin ror^{y i h}or

Constant- Approximation

- ${}^{(1)}(X) g h r y_{OV} s h t rysghc h y h X r hh rrg h$ $| {}^{(1)}(W) - {}^{(1)}(0)| | {}^{1}(0)|.$
- Cons an app o ma on $tr t^{(1)}(X)$ s is in X

Rutherford Equation - I

• Asy pie
$$\mathfrak{E}$$
 \mathfrak{E} h \mathfrak{m} i n nn r \mathfrak{m} trrg nsy \mathfrak{m} s
 $r = -4 \int_{+}^{-\infty} J \cos d$.
• $\mathfrak{n} s \mathfrak{m}$ fr $\mathfrak{n} s \mathfrak{m}$ f \mathfrak{m} rety \mathfrak{q} t \mathfrak{n}
 \mathfrak{m} $\mathfrak{$

Basic Assumptions

- Rins frs fspciy
- Ass pr ctrhhttrisprisc hystrigiht $T_e = T_e(\)$
- Ass $T_i/T_e = = constant frs$ fs pc ty

$$\begin{array}{rcl} \textbf{Drift-MHD Equations - I} \\ \bullet & t \ \sigma \ ^{y} \ ^{s} t \ \sigma \ ^{r} \ ^{f} t \ & \bullet \ ^{q} \ t \ ^{ns} \ ^{a} \\ & = \ -x^{2}/2 + \ \cos \ , \ \ U = \ ^{2} \ , \\ 0 \ = \ [\ -n, \] + \ J, \\ 0 \ = \ [\ -n, \] + \ J, \\ 0 \ = \ [\ ,U] - \frac{1}{2} \left\{ \begin{array}{c} 2[\ ,n] + [U,n] + [\ ^{2}n, \] \right\} \\ & + [J, \] + \mu_{i} \ ^{4}(\ + \ n) + \mu_{e} \ ^{4}(\ -n), \\ 0 \ = \ [\ ,n] + [V_{z} + J, \] + D \ ^{2}n, \\ 0 \ = \ [\ ,V_{z}] + \ [\end{array} \right.$$

Polarization Term - I
•
$$r \varepsilon ty q t hy \sigma s$$

 $J_c = \frac{1}{2} \left(x^2 - \frac{x^2}{1} \right) \frac{d[M(M + L)]}{d} + I()$
 $t_{\sigma r} s p r tr h^r J_c s p r t f J t_h cos sy try$
• As fr s rfc r g f O h s y σs
 $J_c = I() 1 = -1 \frac{d}{dt} cos$.
• σ
 $J_c = \frac{1}{2} \left(x^2 - \frac{x^2}{1} \right) \frac{d[M(M + L)]}{d} + -1 \frac{d}{dt} \frac{cos}{1}$.

Drift-MHD Theory: Summary

• s h pr pg i s i pr phc r s s y g h or rg f h prir n s h h h c i r h or c i s

- Listrptr nRthrfrqtns st ng
- Printr nRthrfr qinssi ng prorn prpnc rostygrtyc scirnprpnc r orsty fihsht pct horst ng thrs