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Mechanisms have been developed to
control/affect plasma rotation

•   Toroidal rotation is influenced by:
– External sources --- neutral beams
– Intrinsic rotation --- topic of considerable research

• A number of mechanisms have been proposed for intrinsic
rotation --- turbulence, etc.
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Describing toroidal rotation in tokamaks
is a transport problem

• To date, most treatments describing toroidal rotation evolution rely on:
– Braginskii 



4th ITER International Summer School
Austin, TX
May 31, 2010

Thesis
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Outline

•
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Starting point for the calculation is
the plasma kinetic equation

• Plasma kinetic equation for fs(x,v,t).

– C(fs)  =  Fokker-Planck collision operator
– S(fs)  =  Kinetic source  --- applied RF fields, neutral beams, etc.

• Fluid moment equations are obtained from velocity-space moments of
the plasma kinetic equation

– Evolution equations for low order velocity space moments
(ns,Vs,ps)
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A number of assumptions are made
to make analytic progress

• Small gyroradius expansion
– Consequences for how we describe flows

• Lowest order --- MHD force balance
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Small gyroradius expansion is used

• Gyroradius expansion:  order terms and physical processes 
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Transport equations for density and pressure are
obtained by flux surface averaging

• Flux surface averaging density and energy equations with V’ = dV/dψ

– Cross-field particle/heat fluxes due to collisional and fluctuation
processes
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The different orders of the momentum balance
equation refer to different timescales

• To leading order in δ, MHD force balance
– Summing radial momentum balance
– Radial force balance produces relationship between toroidal,

poloidal flows, Er and pressure gradient

• First order flows are on magnetic surfaces V1 ~ δ

• Radial flows perpendicular to flux surfaces are second order
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Poloidal flow is obtained from parallel force balance
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Viscous damping occurs



4th ITER International Summer School
Austin, TX
May 31, 2010

After determining the poloidal flow, there is a unique
relationship between Er and the toroidal rotation

• Recalling the radial force balance relationship

– Using parallel momentum balance result
– Relationship between radial electric field and toroidal flow

– Poloidal flow damping produces parallel plasma flow
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determined by transport processes
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Electron parallel momentum balance produces
parallel Ohm’s law

• Following the same logic for the parallel electron momentum balance
equation

– Using collision friction and neoclassical closure from kinetic theory

– Parallel Ohm’s law
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Parallel Ohm’s law is used to describe collisional
ambipolar particle flux

• Consider the particle fluxes from collisional friction

– Vector identity used to facilitate analysis

– Collisional-friction can be decomposed into parallel and
perpendicular contributions

  

! 

"s
a = #

1
qs

<
r e $ %

r 
R s > #n0 <

r e $ %
r 
E >

r 
R e & nee('||

r 
J || +'(

r 
J () = #

r 
R i

  

!





4th ITER International Summer School
Austin, TX
May 31, 2010

Plasma fluctuations influence particle flux/toroidal
momentum balance

• At O(δ2), plasma fluctuation effects enter into the toroidal momentum
balance
– Microturbulence effects --- turbulent Reynolds/Maxwell stresses
– 3-D magnetic fields --- error fields, applied 3-D coils

• Resonant magnetic perturbations --->  localized electromagnetic
torques

• Non-resonant magnetic perturbations ---> Neoclassical toroidal
viscosity

• In general, these effects are not intrinsically ambipolar and hence will
affect toroidal momentum balance.
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3-D magnetic fields produce neoclassical toroidal
viscous forces (NTV) throughout the plasma

• In an axisymmetric magnetic field, the toroidal component of the
parallel viscous stress tensor is zero (µdB/dζ = 0)

– However, in the presence of 3-D magnetic fields, toroidal torques
on toroidally flowing plasmas are generated.

• Physics --- transit-time magnetic pumping, banana-drift, ripple-
trapping effects

• Generally, the ion component dominates (the ion root of
stellarator physics)

• Ion viscous damping coefficient µit depends on collisionality, Er
• Beff

2
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The NTV force is felt throughout the plasma

• Unlike torques due to resonant 3-D magnetic fields, the NTV force is
global
– Applied 3-D fields on NSTX demonstrated the damping effect of

toroidal flow (Zhu et al, PRL ‘06)

• Favorable comparison
to analytic predictions

• NTV physics has been
seen on NSTX, DIII-D, 
MAST, JET
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Experiments on DIII-D have demonstrated the
presence of the NTV offset velocity

• Off-set rotation velocity observed on DIII-D (Garofalo et al ‘08)

Initially, slowly rotating
Plasmas sped up to the
Offset NTV velocity when
3-D fields are applied
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Recent experiments on DIII-D have demonstrated a
peak in the NTV force at zero radial electric field

• The toroidal damping rate (µti) is sensitive to the value of the radial
electric field
– Damping rate corresponds to different collisionality regimes of

stellarator neoclassical transport
– Smoothed formula constructed to model different collisionality

regimes (Cole et al, ‘10)

Peaks at ωE ~ 0

Recent experiment on DIII-D
Demonstrates peak NTV at ωE ~ 0 
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Particle flux has 8 non-ambipolar contributions

• Not intrinsically ambipolar
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Zero radial current produces torque balance relation

• Summing radial species currents to obtain net radial plasma current

– Charge continuity requires no net radial current

– Setting radial current equal to zero produces a comprehensive
toroidal torque balance relation
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Toroidal rotation determines radial electric field
required for net ambipolar particle flux

• From toroidal rotation equation, radial electric field is determined

• The resultant electric field causes the electron and ion 
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Summary

• Comprehensive transport equations for n, T, Ωt have been derived
• Radial, parallel and toroidal components of force balance are

considered
– Radial force balance --- relationship between Vt, Vp, Er and dpi/dψ

– Parallel viscous damping determines neoclassical Ohm’s law and
poloidal ion flow

– Radial particle fluxes arise from average toroidal torques on the
plasma

• Radial particle flux has many contributions --- ambipolar and non-
ambipolar

• Requiring ambipolar particle flux yields evolution equation for toroidal
angular momentum density
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Summary

• 3-D magnetic fields have an important effect of flow evolution
– Localized EM torques from resonant magnetic fields
– Neoclassical toroidal viscosity (NTV) from variations in |B|

• Many aspects of NTV theory are being tested against experiments
– Global damping of toroidal flow profile
– Appearance of an offset rotation ~ dTi/dψ

– Peak of NTV torque near Er ~ 0


