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Runaway Electrons in Tokamaks

S.Putvinski

ITER Organization 
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Outline

• Introduction

• Physics of RE generation

– Dreicer acceleration

– Avalanche

–
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MeV runaway electrons have long range

•
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Dreicer acceleration

• Introduce electric field equal to maximum 

friction force (Dreicer field):

• At electric field much smaller than maximum 

friction force only electrons from far 

Maxwellian tail can accelerate

• RE electrons form anisotropic tail on 

distribution function

Electron energy

Collisional friction
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Dreicer acceleration rate (Gurevich, 1960)

• At E << ED only far tails on the distribution function are affected by electric 

field

• In this case the runaway generation rate (Dreicer source) can be 

calculated from kinetic equation (see f.e. Review of plasma physics v. 11, 

1982)

• Home work problem: solve analytically 1D kinetic equation 

• at E=const , n0=const and estimate Dreicer source
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How to get runaways in tokamak?

• Toroidal electric field:

• Friction force:

• Runaway electrons are produced in low density cold plasmas (f.e. 

contaminated by impurities)

• In a “normal” discharge the loop voltage is small and electric field is below 

critical field.  Example (ITER): Loop voltage during flat top U < 0.1 V, 

Electric field  E=U/2R < 0.003 V/m, Critical field, 

• Generation of RE in tokamaks occurs during plasma disruptions
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Plasma disruptions
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Plasma  can abruptly disrupt in a tokamak

• This disruption is triggered by Ne injection and following edge cooling

M.Lehnen, 



Summer school, Aix en Provence, 2011 Page 13

Plasma disruptions can be very damaging in ITER
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Thermal and Current quench phases

H-

mode

L-

mode

CQ

TQ

Plasma 

current

Plasma 

energy

RE current

t

Typical chain of events during 

plasma disruption

• The largest thermal loads occur during Thermal Quench

• Major mechanical forces act on plasma facing components during Current 

Quench

• Runaway electrons can be generated during Current Quench
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Expected energy loads and their limits

• Maximum energy loads are expected on the divertor targets. Energy 

density scales as R3 and in ITER it will be 10 times larger than in JET

•
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Expected energy loads and their limits

• Surface temperature under pulse loads can be estimated from heat 

conduction equation:

• During transients the depth of the heated layer, dx ~ (kt/rC)1/2 and, thus,

• Parameter  shows how close surface is to the melting temperature. 

• Thermal quench time is expected 3 ms and thus during ITER disruptions 

~400 MJ/m2/s1/2

• Surface melting occurs at:

 = 23 MJ/m2/s1/2        for Be,  

 = 50 MJ/m2/s1/2        for W,

 = 12 MJ/m2/s1/2        for SS,
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MGI can to re-radiate most of plasma thermal energy

• Challenge for ITER DMS: re-radiate ~300 MJ of plasma thermal energy in about 3 

ms and distribute it uniformly over FW

• Experimental results from present tokamaks with pre-emptive injection of high Z 

gases are very encouraging

– ASDEX-Upgrade  60-100%   G.Pautasso, Pl.Phys,2009

– Alcator C-mod      ~75%        R.S. Granetz, NF 2007

– JET                      ~ 90%        M.Lehnen, ITPA 2011M. Lehnen, IAEA 2010

E.Hollmann, NF 2008
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Few  kPa*m3 is needed to radiate plasma energy in ITER

• Assuming assimilation factor of injected 
impurity of 5-10% the gross amount of 
injected impurity must be:

– Ne ~ 1-2 kPa*m3

•
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MGI of noble gas can significantly reduce CQ time

• Simple 0D model, j2/s = Prad, reasonably well describes current decay at CQ

• There is still a reasonably large window of 0.1 -10 kPa*m3 to mitigate thermal loads 
without excessive forces on the in-vessel components

• Mitigation of TQ energy loads by MGI is consistent with acceptable CQ duration

CQ time (linear) vs amount 

of injected Ne for mitigation 

of TQ (corona radiation). 

I = 15 MA, nDT=1.1020 m-3



Summer school, Aix en Provence, 2011 Page 21

Large loop voltage during Current Quench

• ITER example: plasma current 15 MA, Current decay time 100 ms, 

plasma inductance 5 mH result in 

U = dLI/dt ~ 750 V; E = U/2R ~20 V/m >> Ec

• Avalanche during plasma disruption can result in massive RE current

• Integrating over time
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Large RE current can be generated

1) It must be a seed current for avalanche to work

2) Maximum current is not sensitive to the plasma parameters
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Electron energy is 10-20 MeV

• Electron acceleration is diluted by multiplication of electrons

• In steady state

• What about background plasma? Ohmic heating of the background 

plasma by RE current is significant

• Power density, pRE = jREEc , and total heating power, PRE=VpRE = IREUc

• An example for ITER parameters, i.e., j = 500 kA/m2, Ec ~0.075ne ~0.1 

V/m,  Uc ~ 3V, IRE=10 MA

PRE = 30 MW
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Energy spectrum has been calculated numerically

• 2D distribution function of RE after 

saturation of RE current, t = 200

• Monte-Carlo calculations of 

avalanche in plasma with a/R = 

0.1, Zeff = 4, and initial electric field 

E/Ec = 15

• Energy distribution averaged over 

pitch angle is close to Maxwellian

f ~ exp(-E/T)

• with T ~ mc2ln() as has been 

estimated above

From Rosenbluth NF, 1996
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Runaway electrons are often observed during plasma 

disruptions

• Large loop voltage can 

accelerate electrons to > 10 

MeV

• Plasma resistive current is 

replaced by current of 

relativistic electrons

• Hard X-rays and 

photoneutrons are typical 

signature of energetic 

electrons

• Soft x-rays from chord array 

show that RE current is 

peaked near magnetic axis

• Runaway electrons in JET 

(Pluschin, NF,1999)
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Energy deposition on the wall

• Due to small ratio Vperp/c loss of runaway electrons is extremely localized

• Expected wetted area in ITER is only 0.3-0.6 m2
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• Movie
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RE current has to be reduced to < 2 MA

• Kinetic energy of RE scales as IRE and is 

expected to be ~10 MJ at IRE~10 MA. Magnetic 

energy of RE scales as IRE
2 and is about 200 

MJ

• The critical question: how much magnetic 

energy will be transferred to RE kinetic energy 

during CQ?

• Results of analysis of experimental data from 

JET (A.Loarte et.al. NF, 2011) suggest that up 

to 40% of magnetic energy have been 

transferred in some shots

• More theoretical and experimental work is 

needed to resolve this uncertainty

Total energy of RE as function 

of RE current. Average electron 

energy = 12 MeV and li = 1 for 

the RE current 
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Better understanding CQ plasmas is needed

• Plasma parameters during CQ: n= 1 1020 m-3, T = 10 eV, CQ ~ 40 ms

• Ion and electron mean free path in CQ plasmas: i ~e ~1 cm

• Pressure equilibration time along the field lines: p ~2R/Cs ~ 1 ms -> 

pressure is constant along magnetic field lines.

• Temperature equilibration time: c ~ L2/c > 100 ms! Temperature and, 

hence, electrical resistance can be not constant on magnetic surface after 

MGI 

• Variation of plasma resistivity will result in electrostatic perturbations E = 

E0 – grad and magnetic perturbations. How long does it takes for them to 

decay?
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Problem of missing seed current

• Avalanche results in exponential amplification of the seed current

• Dreicer source is exponentially small in 10 eV plasmas and many orders 

of magnitude smaller than needed for avalanche!

• Other sources:

– Tritium b decay produces 10 keV electrons with the rate 3 1011 1/m3s. Not enough

– Compton scattering of gammas. Could work but there is no gammas during CQ!

• It should be some other sources.
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Relict tails

• What if far Maxwellian tails survive thermal quench (H.Smith 35th EPS)?

• How long will it take to cool down in 10 eV CQ plasmas?

• Solution (Maxwellian as initial condition): 
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MHD stability of RE beams

•
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Kinetic instabilities

• Resonance in magnetize plasmas

• At w ~ nwBe , kzvz = w-nwBe << nwBe plasma is 

unstable when 

• Runaway electron tail can not make cyclotron 

wave unstable
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• Cherenkov resonance w = kzvz results in stable oscillations for monotonic 

distribution function of RE

• Anomalous Doppler effect kzvz = -nwBe,  at n<0 can provide energy 
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Magnetize Langmuir waves

• Dispersion relation

• Linear theory for Dreicer distribution function, 

non relativistic, see V.Parail, Reiew of Plasma 

Physics v.11 

• Stability threshold at 

• In ITER,  wBe > wpe and RE beam much be 

much faster than critical velocity for 

• Quasilinear analysis predicts periodic bursts of 

instability with anomalous scattering of RE

• Could result in reduction of avalanche growth 

rate but analysis has not been done yet.
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Runaway mitigation/suppression
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Collisional suppression of RE is challenging in ITER

• Avalanche can be suppressed by: 

– increase of electron density to enhance collisional slow down of RE (Ec = 0.075ne
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Collisional suppression of RE is challenging in ITER

• Massive gas injection for reaching critical density will reduce current quench time 

beyond low limit acceptable for mechanical loads

• Modeling of current quench with Ne 

injection

• Reaching critical density will likely 

be above capability of the machine

• Collisional suppression might work 

if RE will be suppressed at density 

30-50% of critical (Rosenbluth’s) 

density

Ratio Ec/E as function of Ne 

amount in the plasma (red). CQ time 

is also shown (blue)
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RE suppression by de-confinement

• Fast loss of RE, , can suppress avalanche

• Keep magnetic surfaces from healing by applying external MHD 

perturbations produced by external coils (works in experiments)

• 1) To achieve fast loss amplitude of external perturbations has to be 

sufficiently large

• 2) These perturbations have to be quickly switched on prior to RE 

generation

• ELM coils in ITER are two weak and too slow to do the job
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Modeling of RE confinement with ELM coils

• No global loss of RE (only redistribution) at maximum coil current

Typical evolution of the second central 
momentum in fully stochastic region.

Magnetic surfaces and diffusion coefficient 

profile for t=20ms after Thermal Quench.
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Suppression of RE electrons by repetitive gas jets

• Large magnetic perturbations and secondary disruptions can be produced by dense 

gas jets injected repetitively in the CQ plasma

• Required gas pressure in the jet ~ 1 atm, gas amount ~1 kPa*m3, 5-6 jets during CQ 
(staggered in time by >= 5 ms ). 

• Based on estimates the total amount of gas can be 10 times less then for collisional 
damping!

• R&D is in progress to test this scheme in Tore-Supra, ASDEX-U, T-10.

CQ

TQ

Plasma current

RE current

t
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Triggering MHD by contracting current profile

• Cylindrical geometry, ideal wall at b = 1.3a, low m modes

• Current profile changed by introduction of high resistivity at the plasma 

edge. Skin current added to the edge of current channel to conserve flux 

at the moving edge

• Current profile has to shrink up to q = 2 (r ~0.7a) to trigger major MHD 

event
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High gas pressure is needed for fast gas propagation

Jet expansion across magnetic field
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• Recombination front velocity 

across magnetic field is defined by 

energy balance on the gas front

• For fact propagation into the 

plasma gas density in the jet n ~ 

1024-1025 m-3

ppl << p0 << B2/20
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Gas delivery systems for DMS

• DMS requires gas delivery time ~10 ms for TQ mitigation and < 5 ms for 

RE suppression. To achieve high pressure in the gas jet “valve” must be 

close to the plasma. Harsh environment in ITER make it difficult.

• Several concepts of gas delivery systems with response time ~1-2 ms 

have been suggested for ITER and are presently in the development 

phase

• Injector for large cryogenic pellets shuttered upon entry into the chamber 

is an alternative way to mitigate TQ (under development in ORNL)
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Pellets in RE plasmas

• Can pellets (cryogenic or solid Be bullets) be used to suppress RE?

• What will happens with solid pellet injected in RE discharge?

•
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Cascade of pellet destruction by RE

• Pellet with velocity 300 m/s will evaporate after travelling ~10 cm in RE 

plasma

• Observed in experiments with hollow pellets on DIII-D

DDD
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Summary and conclusions

• Runaway electrons can be produced in a tokamak during plasma 

disruption

• It is expected that machines with large current shall be more susceptible to 

the runaway electrons than the present tokamaks

• Modeling shows that ITER shall have massive runaway electrons during 

disruptions with current up to 10 MA and total energy 20-200 MJ

• Runaway electrons must be suppressed in ITER to provide required life 

time of the plasma facing components

• Reliable runaway suppression scheme has yet to be developed for ITER


