

• Why are tritium and dust important ?

- TFTR & JET tritium experience
 - -H retention in other tokamaks
- Tritium removal
- Projections for ITER

-Tritium safety

T inventory limit is derived from no public evacuation criterion (< 50 mSv dose) <u>GSSR analysis*</u>

- Conservative weather, building wake, 1 km to site boundary
 - => 90 g T tolerable ground level release.
 - ground level release = T release x building confinement factor
- Worst credible accident:
 - Vacuum vessel bypass event and
 - 8 hour blackout (8 h) and
 - In-vessel loss of coolant
- For 1 kg T inventory only 15 g tritium released to environment
 - good safety margin !

*Analysis now updated for Caderache site in Preliminary Safety Report.

- Tritium can be released in dust as well as T₂ and DTO gas
- W dust can also be activated

Tritiated dust more hazardous than HTO

2^{4.00}

10

Skinner, IISS, Fukuoka, July 22-25, 2008

Skinner, IISS, Fukuoka, Ju

• Why are tritium and dust important ?

- TFTR & JET tritium experience
 H retention in other tokamaks
 - Tritium removal
 - Projections for ITER

Basic mechanisms for retention

1. Short-term adsorption followed by outgassing!

Two complementary methods to measure retention (R).

- Gas balance, or fueling exhaust (typically R≈ 10%-20%)
- Analysis of components removed from vessel (typically R≈ 3% 50%).

Bay H midplane graphite coupon: 24 Ci/m² Bay N bottom graphite coupon

Images_of tritium on TFTR tiles (2)

Penetration of T into gaps depends on magnetic field and population of high and low sticking probability hydrocarbons.

333

I mportant for tritium removal

TFTR tile samples

9-00-00

100

್ಷನಿ 😂

(John Hogan)

BBQ code describes:3D space, 3D velocity test particle Monte Carlo **os**de for emitted C impurities from **physicab** chemical sputtering and radiation-enhanced sublimation (RES)

Parallel,

Location:	Area (m²)	Average Ci/m ² from bakeout + 10%	Inventory (Ci)	(g)
Bumper limiter	22	87	1,900	0.2
Outboard	110	32	3,500	0.36
Total			5,400	0.56
cf. fueling - exhaust			6,	

-JET interior

- JET DTE1 experiments 1997, (PTE 1991)
- JET has divertor.
- Walls are erosion areas
- Walls are heated 150-320 C.

 TFTR edge plasma

 Ne
 0.1 e19 - 1 e19 m-3

 Te
 200 - 600eV

Prompt retention rate higher than expected

IT1UUUUU 33.92

89

2000

P. Andrew et al., Fus. Eng. Des., 47 (1999) 233

Flakes at inner louvres of Mk IIA divertor

Tritium on the inner divertor louvres (0.5g) and sub divertor region (3.4 g). c.f. tiles (<0.1 g) *P. Coad, UKAEA/JET*

Skinner, IISS, Fukuoka, July 22-25, 2008

Tritium can diffuse into carbon tiles

- Core samples of tiles are sliced into 1 mm discs
- These are incinerated to release all tritium.
- Tritium is measured by liquid scintillation counting.
- Results show 61% of retained tritium had diffused deep into bulk of JET 2D CFC tiles.
- This is a concern since removal from bulk is practically impossible.

N. Bekris et al., J. Nucl. Mater., 313-316, 501, (2003)

Long pulse effects: Tore Supra experience

ω.

Th. Loarer PSI-18

Surprising results from C-mod w

20.00

10

- Why are tritium and dust important ?
- TFTR & JET tritium experience

-H retention in other tokamaks

- Tritium removal
 - Projections for ITER

Tritium removal options

Potential Options

- 1) Remove whole codeposit by:
 - oxidation (maybe aided by RF)
 - ablation with pulsed energy (laser or flashlamp).
- 2) Release T by breaking C:T chemical bond:
 - I sotope exchange
 - Heating to high temperatures e.g. by laser
- Constraints:
 - 6.1 Tessla field at inner divertor
 - 10,000 Gy/hr gamma field from activation, 3 h after shutdown, after sears DT ops.
 - Access difficult, especially to hidden areas

Tritium removal by oxidation:

• Oxygen can remove carbon codeposits by oxidation to DTO, CO₂, CO.

31/50

Skinner, IISS, Fukuok

Removal by ablation using excimer lasers or flashlamps

Flashlamp ablation:

CFC tile coated with a 28 μ m aC:H film (darker regions). The lower region was masked during film deposition to act jate a Q q 0.2400000 0 0 0 2400000 35 control. Deposition was removed in-vacuo 8 2 T j ET Q q 0.24000001 0 0 2400000 35 92002 40

Detritiation by laser

A 68 88

Skinner, IISS, Fukuoka, July 22-25,

Nd laser in action:

333

7/8" cube cut from

Nd laser power only 6 w to avoid camera damage (300 w available) TFTR DT tile cube KC17 2E in air at 200 mm/s.

Skinner, IISS, Fukuoka, July 22-25, 2008

Application to ITER?

- Fast cleanup 6 kW laser can deliver • energy to heat 50 m² surface in 3 hours in next-step device.
- Convenient fiber optic coupling. •
- no HTO to process (HTO is 10,000x • more hazardous than T_2 and expensive

Other methods:

100

1.000 C

Dust generation

89

388

ITER retention depends on material choice

Present ITER strategy:

I nitial hydrogen/deuterium phase:

 Beryllium wall, 700 m² (low Z = low radiation losses, oxygen getter,

Erosion > co-deposition > tritium inventory

333

Implantation: D in W divertor tiles

- Code calculations (Ogorodnikova) based on experiments.
- Neutron irradiation assumes saturation at 1% additional trap sites.
- DI FFUSE code (Causey)

Roth PSI18

Implantation + codeposition

Recent EU assessment of tritium inventory in I TER for various PFC material options (to appear in PPFC)

Similar, independent plot by ITPA SOL/Div group (to appear in 2008 IAEA proceedings).

Summary:

- Managing tritium inventory is a challenge for ITER and future DT reactors.
- •

References in Literature:

 "Recent advances on hydrogen retention in ITER's plasma-facing materials: Be, C, W." Skinner aasz V h limov et al to be published in usion Science Technology November

1.000 A 688 A 100 A 1

200

333

50/50