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Experimental observations of the

radial electric field formation after
the L-H transition















Theoretical study of “poloidal
shock” formation, and

comparison with experimental
observations.




lon orbit loss model near the plasma boundary was
proposed [Itoh and Itoh, PRL1988]

« In1988-89 (>5 years after the 15t H-mode Transition from the branch of
discovery in ASDEX), before experimental 'OTC%??UX (L) to small flux (H)
observation, theoretical work predicted :
that the E, might play an important role in
the mechanism of the L-H transition.

e Experimental verifications on many devices
were also performed [Burrell, PPCF 1992, PoP
1997; Ida, PPCF 1998].

e Itis conventionally believed that the high
confinement regime is achieved when the
E ><B shear is sufficient to stabilize the
turbulent fluctuations responsible for
anomalously high transport.













Does turbulence Reynolds Stress suffice for
an origin of E, (mean field or ZF) ?

Model: Turbulence transfer free-energy to poloidal flow through
the turbulent Reynolds Stress (Kim, PRL 2003, Diamond, PRL 1994,
PPCF 2005)
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This model is a well-known feature of a predator—prey type
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Key diagnostics
(HIBP and CXRS)
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HIBP and CXRS are the most powerful tool for the physics study
of edge Er formation




Recent experimental results (JFT-
2M)

JFT-2M (JAERI Fusion Torus-2M)
tokamak

R=13m,a=0.35m

B,<22T

,<0.5 MA

(Medium sized tokamak)

NBI power

http://www-jt60.naka.jaea.go.jp/jft2m/
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A 500 keV Heavy lon Beam Probe (HIBP)
diagnostic on JFT-2M FT-2M

‘ 1. Singly charged thallium ions wi
accelerated energy of up to 50¢

reldnesn









Mean profile of E, and density gradient in both L-mode and
LCO phases are found to be similar

_ H-mode,;
Steep gradient in |, gp (density

gradient becomes steeper)

Strong E, (=-d /dr)

E, > B velocity (~ 30 km/s) is quite
larger, in comparison with the
amplitude of the flow modulation
JFT-2M induced by the LCO (~0.5 km/s)
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Micro-scale turbulence in LCO phase was also

similar to that in L-mode

Power spectrum of ¢

. --A

r-a=-1cm
LCO
Broad band
L turbul (Averaged
urbulence cony (AVEID — -
H

In H-mode, high frequency
component is suppressed.
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Reynolds stress drives only ~15 m/s of poloidal

velocity modulation during LCO FT-2M

Reynolds stress (f=40-70 kHz)
M, = <E E;>/B2
= -S?%k ky/(2 B2)
M, = -Sy2K Ko {2S5/S+K /K +Ko/Ko} /(2 B2)
Equation of motion
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- where, dielectric constant: €| — i

Evaluated flow modulationis: ~ ~2Y

,
;t.l -‘-*-J 4' [ A
Pins TR, ~ 15 m/s

r-a~-0.8 cm

(conditional average of 21 oscillation periods)
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Discussion: Causal Relation among Electric Field E,,

Turbulence S and Density gradient L™ FT-2M

at the location of maximal E, amplltude during LCO.
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(1) Growth of -E, suppresses S and transport, and induces the growth of L, L.
(2) Strong L, excites S and transport.

(3) Transport leads to decay of -E, and following relaxation of L .
Observed temporal evolution seems to be corresponds to

the E, bifurcation model [S.-I. Itoh, K. Itoh., et al., PRL (1991)],

=> Perhaps, the E -bifurcation model may maintain the LCO phases,
rather than P-P model.




Recent experimental
results (JT-60U)

R=34m,a=1m
Br<4T
I, <3 MA

(Large sized tokamak)

http://www-jt60.naka.jaea.go.jp
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Theoretical prediction of the turbulence intensity;
I/1,=1+ (E,)*+ EE,



Diagnostic

., N ..

Diamagnetic Poloidal Toroidal Velocity Term

* OnJT-60U, we measured the radial profiles for
the n;, Ty, V5, @and
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Improved statistics in assessing the temporal behavior of the
measurements can be obtained

Co.: fe = 33.2 [HZ], Wgiy/Wopq = 9.3 [%]
Ctr: fe = 40.1 [Hz], ( Wiy /Woeq = 6.1 [%])

By mapping of
multiple,
reproducible
ELM cycles
onto a single
time basis
(defined by

/ relative time to
the ELMSs,

tELI\/I)'




Spatio-







Relationship between the Max. normalized temperature
gradient and E, (and/or E,”) locations

Separation of E,-shear locations for both positive and negative values
Is about ;(or more) => So that we could discuss on the effect of
curvature in a range of spatial resolution of CXRS diagnostics (~ 1cm).






Scaling relations of the solitary structure in the edge

electric field have been developed
[K. Itoh, et al., Plasma Phys. Control. Fusion 57 (2015) 075008]
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An order of E E,” predicted by model
IS not far from experimental observations

JT-60U (ELMy H-modes):
E.E =104 [V2/m4].

Kamiya,
PoP2014

LHD (electrode biasing):
ErEr”=10° [V2/m4].

Tokuzawa,
PoP2014

l Electrode_H L&;x-C_l
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T, pedestal may not necessarily be followed by the change in the

E, structure, especially for a later H-phase

(a) lon temperature Both weak and strong
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