

13th ITER International School December 9, 2024

1/60

Outline

- Bolometer diagnostics
	- Bolometry and sources of radiation
	- Resistive bolometers (RB)
	- Imaging bolometers (IRVB)
- Geometry matrix calculation
- Synthetic diagnostics
	- for comparison of plasma model with experimental data
	- utilization for diagnostic design
- Tomography examples:
	- 1D using SVD with RB in LHD
	- 2D using RGS with RB in W χ
	- 2D using Phillips Tikhonov with 1 IRVB in KSTAR
	- 3D using Tikhonov with 4 IRVBs in LHD
	- 2D using SART and Bayesian with RBs and IRVB in MAST
- **Conclusion**

Bolometry

Sources of Radiation

free electron Cyclotron (38 kW) S_c 5 10 $^{38}n_e^2T_e^2(W/cm^3)$ $(T_{_e}$ 4 keV, $n_{_e}$ 4 10 13 / cm^3, V 30 $m^3, Z_{_{eff}}$ 3, B 2.5T)

ion-electron interaction Bremsstrahlung (38 kW)

free-bound transition Recombination 1.7 10 ${}^{32}n_e T_e^{1/2}$ $Z^2 n_z \stackrel{L}{=} (W/cm^3)$ 1 $Z^2 n T^{1/2} = Z^2 n_z \frac{E}{2m}$ (W / cm *T E S* **1.7** 10 $^{32}nT^{12}$ Z^2n *e Z Z* r **i f** *v* **e** *e e e e e e e e e e e e e e e e e e z*

bound electrons Line radiation of impurities

$$
S_{imp} \qquad n_e n_{n,Z} L_{n,Z} (T_e)
$$

Gold Foil Thickness (sensitivity) vs Photon Energy

Outline

2/73 14/60

- Bolometer diagnostics
	- Sources of radiation
	- Resistive bolometers (RB)
	- Imaging bolometers (IRVB)
- Geometry matrix calculation
- Synthetic diagnostics
	- for comparison of plasma model with experimental data
	- utilization for diagnostic design
- Tomography examples:
	- 1D using SVD with RB in LHD
	- 2D using RGS with RB in WX
	- 2D using Phillips Tikhonov with 1 IRVB in KSTAR
	- 3D using Tikhonov with 4 IRVBs in LHD
	- 2D using SART and Bayesian with RBs and IRVB in MAST
- **Conclusion**

Resistive Bolometer Arrays, Calibration and Profile Inversion

12 channel bolometer array

1D plasma grid definitior sokENDAI

assumption: constant on a flux surface

Resistive Bolometer Arrays, Calibration and Profile Inversion

Outline

21/60

- Bolometer diagnostics
	- Sources of radiation
	- Resistive bolometers (RB)
	- Imaging bolometers (IRVB)
- Geometry matrix calculation
- Synthetic diagnostics
	- for comparison of plasma model with experimental data
	- utilization for diagnostic design
- Tomography examples:
	- 1D using SVD with RB in LHD
	- 2D using RGS with RB in WX
	- 2D using Phillips Tikhonov with 1 IRVB in KSTAR
	- 3D using Tikhonov with 4 IRVBs in LHD
	- 2D using SART and Bayesian with RBs and IRVB in MAST
- **Conclusion**

Foil temperature from IR camera

EMC3-EIRENE

THE STRICT OF isa's 14

Design of imaging bolometer for ITER using synthetic diagnos

Power spectra shows high energyays from core

- \bullet for $\mathcal{O}(\mathcal{A})$ and $\mathcal{O}(\mathcal{A})$ and $\mathcal{O}(\mathcal{A})$ \bullet (Resp. 12) (mm) (same as 12 μ is the system) (same as 12 μ is the system)
- \bullet SANCO and SOLPS data are provided in terms of both \mathcal{S}
-

$S_j = S (x, E)$ E

- \bullet Using the projection matrix for the \mathbb{R}^n $P_i(E)$ $\mathcal{E}(E)$ is calculated. The each IRVB channel is calculated. In the each IRVB channel is calculated.
	-
- \bullet . This is reduced to 93 energy channels from 1.1 to 93 energy channels from 1.1 to 97.8 \pm

•

-
-
-
-
- - -
		-
-
- orthonor of the street of ARP in the second control week
	-
	-
	-
	-
-

Necessary foil thickness for core IRVB on ITE $\frac{1}{(\alpha + \bar{\beta}^2)^{\frac{1}{2}} \cdot \bar{\beta}^2}$

 \bigcirc = 1 \bigcirc

\bullet Maximum energy channel (green) channel (green) channel (green)

- \bullet 90% of \bullet
- \bullet 95% of Pradicipality 78 m Pt foiled by 78 m Pt foiled \bullet Maximum power channel (orange channel (orange channel \mathcal{O}
	- \bullet 90% of Pradia by 27 m Pt foiled by 2
	- \bullet 95% of Pradia by 61 m Pt foiled by 61
- \bullet Indonesia resistive bolometer) is a set of the resistive bolometer) is a set of the resistive bolometer)
	- \bullet 90% of \bullet
- \bullet 95% of Pradicipality \bullet 95% of Pradicipality \bullet • Outboard channel (blue)
	- \bullet 90% of Pradicipality \bullet 90% of Pradicipality \bullet
		- \bullet 95% of Pradicipality 10 m Pt foiled by 10 m Pt foiled by 10 μ
- Total foil (cyan)
	- \bullet 90% of Pradicipality 11 m Pt foils \bullet 11 \bullet 11 \bullet 11 \bullet 11 \bullet 11 \bullet
	- \bullet 95% of Pradicipality 28 m Pt foiled by 28 m Pt foiled by 28 m Pt foiled by 28 \pm

.

 $~1$ ~0

Foil properties (Pt): $k = 0.716$ W_cmK foil thermal cond. $= 0.2506$ cm²s foil thermal diffusivity *t f* foil thickness $A_f^{} = 48$ cm 2 utilized area of the foil IR camera properties: $_{IR}$ = 15 mK IR camera NET f_{IR} frame rate of IR camera *NIR* number of IR pixels IRVB properties: *Abol* pixel area *fbol* frame rate of IRVB N_{bol} # of bolometer pixels *SIRVB* IRVB noise equivalent power density **IRVB** noise equivalent power

[4]

Plasma parameters:

 L_{plasma} = 10 m length sight line in plasma *Prad* = 67.27 MW total radiated power V_{plasma} = 1049 m³ plasma volume Pinhole camera properties: $A_{ap} = 2.25 * A_{bol}$ area of aperture *lap-f* distance from foil to aperture = 10,20 angle between sightline and aperture *Ssignal* estimated radiated power density on foil

 $S/N = S_{signal}/S_{IRVB}$ signal to noise ratio

[4] B.J. Petersonat al., Rev. Sci. Instrum. **74 (2003) 2040.**

$$
\frac{\cos^4}{4} \frac{1}{2} \sqrt{\frac{3}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{2} \sqrt{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1
$$

Outline

- Bolometer diagnostics
	- Sources of radiation
	- Resistive bolometers (RB)
	- Imaging bolometers (IRVB)
- Geometry matrix calculation
- Synthetic diagnostics
	- for comparison of plasma model with experimental data
	- utilization for diagnostic design
- Tomography examples:
	- 1D using SVD with RB in LHD
	- 2D using RGS with RB in WX
	- 2D using Phillips Tikhonov with 1 IRVB in KSTAR
	- 3D using Tikhonov with 4 IRVBs in LHD
	- 2D using SART and Bayesian with RBs and IRVB in MAST
- **Conclusion**

Resistive Bolometer Arrays, Calibration and Profile Inversion

12 channel bolometer array Calibration

Detector

 Gold foil resistive bolometer Sensitivity \sim 20 W/cm² Blackened with Graphite Time resolution 10 ms 56 channels installed in LHD

Calibrated with chopped HeNe laser of power, and bolometer signal voltage, , to determine sensitivity, , and thermal time, , from

t V V K t P , $-V$, V *rad* \mathbf{r} \mathbf{r} \mathbf{b} 1 \sim V_{1}

Profile Inversion

 $= 0.32$ magnetic surfaces (black in figure) included in CAD model with bolometer sight lines (red and green)

Surfaces divided by lines between x-points and axis

Calculate intersection of viewing chord volume and intersurface volume, , and solid angles, and Write system of equations for detector power, and volume emissivity,

Invert geometry matrix, *ij* using Singular Value Decomposition Back substitute with

CAD drawing of bolometer sight lines and magnetic surfaces

Singular Value Decomposition

'SVD is also the method of choice for solving most linear least squares problems' – W.Press et al. in *Numerical Recipes*

 $T - M \times N$ geometry matrix

1D tomographic inversion - sample data

Pⁱ (W) Initie 0 G [(j)]3TUS BET HORD BESURD 45541990 MED COA THE STAKE the UAAR 9 THE GTOMF ELB BESE TO B468. CODO DAMA dt00010729 0vj nitie 04**04**

Sj (kW/m2)

channel number i

$$
P_i \qquad \frac{ij}{4} V_{ij} S_j \qquad T_{ij} S_j
$$

\bullet 65 lines of sight (bolometer channels) of sight (bolometer channels) \bullet at triangular \bullet can expect triangular \bullet section \bullet

- \bullet and \bullet lasma grid based on \bullet . The value of \bullet is the value of \bullet \bullet 200 poloidal \bullet 200 poloidal \bullet 200 poloidal \bullet
- \bullet Inversion technique: \bullet relative Gradient Smoothing Gradient Smoothing Gradient Smoothing \mathcal{R}

 T_{ij} S_j P_i *j* $\frac{ij}{4}V_{ij}S_j$ *T*_{ij}S_{*j*}

Geometry matrix calculation in W7-X

Wen

A novel regularization functional invoking anisotropy: Wen **relative gradient smoothing (RGS)**

- \bullet Using modelling results of oxygen radiation (EMC3 Eirene) as phantomatically as phantomatically as phantomatically as phantomatically as \mathbb{R}
- \bullet Create synthetic data by multiplying by geometry matrix (for ϕ
- \bullet and 3 gaussian noise (similar to detector noise) \bullet
- \bullet Perform to the performance inversion to the performance inversion \bullet
- \bullet compare to phantometric phantometr •
	-

Imaging Bolometer for ITER: Advantage of Toroidal View

Lower toroidal arr5y Toroidal arr5y Semi-toroidal arr5y Poloidal arr5y

As arrays become more toroidal spatial and angular cover5/ improve

analysis tools developed by L.C. Ingesson

30th EPS, P-4.67 B.J. Peterson, N. Ashikawa

Top view of ITER mid-plane Poloidal projection of LOS:

Maps lines of sight (LOS) back to one poloidal crosssection to show spatial cover5ge assuming axisymmetry

Imaging Bolometer for ITER: Advantage of Toroidal View

As arrays become more toroidal spatial and angular coverage improve

analysis tools developed by L.C. Ingesson

Maps lines of sight (LOS) back to one poloidal crosssection to show spatial coverage assuming axisymmetry

Compared with multiple resistive bolometer camera arrays at one poloidal cross-section

30th EPS, P-4.67 B.J. Peterson, N. Ashikawa, NIFS; S. Konoshima, JAERI; L.C. Ingesson, EFDA/FOM; C. I. Walker, ITER 40/60

KSTAR IRVB with tangential view

Double side carbon coating

IRVB system Time resolution : 10 ms

 24 (tor) x 32 (pol) = 384 ch

IR camera : FLIR SC7600 Detector : InSb (Indium Antimonide) NETD : < 20mK Spectral range : 1.5 ~ 5.1 um Frame rate : 105 Hz Resolution : 512 x 640 pixels

IRVB field of view

2 cm x 2 cm pixel was used for reconstruction test

Reconstruction for pixels smaller than 1cm is ongoing for P_{SOL} calculation.

Material boundary condition of KSTAR is applied to reconstruction code.

Bolometer view

Reconstruction grid

Boundary condition of divertor 43/60

Plasmais dividedinto volumesusingR, z, R cm, $z = 5$ cm, $= 1$ degree $2.5 m < R < 5.0 m$ (50 divisions) -1.3 m $<$ z $<$ 1.3 m (52 divisions) = 0 - 18degrees(18divisions) assumehelicalsymmetry total46,800cells

3D radiation profile related to IRVB images by geometry matr

H:Projection matrix (*Eield of*

 $P = HS$

Tikhonov regularization for 3D plasma reconstruction

H: Geometry matrix . P: IRVB data S:3D radiation profile M: IRVB channel number : Regularization parameter I: Identity matrix

LAININ ALEXAND LA

[2]N. Iwama et al., J. Plasma Fusion Res. 82 (7), 399 (2006)

3D tomographic inversion shows radiation region shrinks from inboard to outboard.

LHD #121787 Rax=3.9m

Tomographic inversion

Once the geometry and area of the foil is defined a method to perform the inversion can actually be devised

Ideally:

$$
\mathbb{E}\left[\mathbf{H}^{-1}\mathbf{M}_{\mathcal{D}}\mathbf{M}_{\mathcal{D}}\right]
$$

with

W = geometry matrix

r = residuals

 m = real emissivity solution

q = theoretical brightness measurement

With real data solving for *q* would return an exact solution, but dominated by noise

SART with Phillips-Tikhonov Regularization

- Simultaneous Algebraic Reconstruction Technique (SART)
	- Iterative technique to find solution *m'*
- penalty function *L*
	- weight given to each spatial pixel in relation to each other and
- regularization coefficient
	- introduced to limit the irregularity of the solution:
- This is θ and it is minimized to find the solution.
- Different types of penalty functions depending on what type of

Bayesian approach considers other factors

Bayesian approach:

Signal noise: The measured camera data is evaluated based on its uncertainty (*^k*).

Further corrections:

Contribution to foil brightness due to the pinhole plate heating

Aperture plate heated by the plasma radiation and reradiates heating foil

Black body radiation due to the pinhole plate heating modelled based on Tmin, Tmax, and the slope of the temperature curve

Tmin

Target

Comparison using self-generated phantom

T-P SART Phantom Bayesian Non field aligned feature, unphysical Emissionty phantomers on 135500ms. Emis Witt phantom f **Bayesian inversion** JOHN UM

More peaked emission (likely a positive)

Comparison using real data

Non field aligned artifacts, **unphysical**

High emissivity stripes aligned to the pinhole LOS

High emissivity close to surfaces far from separatrix, unphysical

Strong brightness as close as possible to the pinhole (compensates for offsetts)

More peaked emission (likely a positive)

Radiated power elongated in the super-x chamber

Conclusions

59/60

- Bolometers measure total radiated power from plasma
	- Resistive bolometers used in 1D arrays for 1D or 2D tomography at one toroidal angle
	- Imaging bolometers can provide thousands of channels
		- with a 2D (toroidal and poloidal) view of plasma
		- In a tokamak axisymmetry with tangential view enables 2D tomography
- Geometry matrix links local and W integrated information and used for:
	- Synthetic instrument
		- Direct comparison with linentegrated data
		- Diagnostic design
	- **Tomography**
- Tomography
	- Used for converting line-integrated data to local information in 1, 2D3
		- you define the plasma grid depending on assumptions and detector type and numing
	- Regularization is used in unddetermined problems to make trade off between information and stability
	- Different schemes can be used to consider:
		- Anisotropy in radiation profiles with poloidal asymmetry (RGS in a stellarator)
		- Spurious signals, other diagnostics, detector noise, negative values, etc. (Bayesian)

Conclusions

• Bolometers measure total radiated power from plasma

•

- Resistive bolometers used in 1D arrays for 1D or 2D tomography at one toroidal angle
- Imaging bolometers can provide thousands of channels
	- with a 2D (toroidal and poloidal) view of plasma
	- In a tokamak axisymmetry with tangential view gives 2D tomography