°ÄÃÅÁùºÏ²Ê¸ßÊÖ

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization publication(s) that you have requested. °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization.

For more information, see our Privacy policy.

News & Media

Latest °ÄÃÅÁùºÏ²Ê¸ßÊÖ Newsline

  • Fusion supply chain | A glimpse into the future for commercial fusion reactors

    Most of the USD 7 billion in investment in private fusion initiatives has gone to companies that are building devices from the ground up. But recently, another [...]

    Read more

  • Outreach | °ÄÃÅÁùºÏ²Ê¸ßÊÖ @ October science festivals

    Every October, before schools pause for two weeks of holiday, towns and cities in France open their municipal spaces to scientific experts of all stripes who ar [...]

    Read more

  • Image of the week | °ÄÃÅÁùºÏ²Ê¸ßÊÖ Director-General visits Russia

    The °ÄÃÅÁùºÏ²Ê¸ßÊÖ Director-General was in Russia last week, meeting with stakeholders and holding technical meetings with colleagues in Moscow and Saint Petersburg. As [...]

    Read more

  • Image of the Week | Sector 5 is on its way

    The first vacuum vessel sector produced in Europe travelled last week between Monfalcone, Italy, and the French port of Fos-sur-Mer. The 440-tonne component had [...]

    Read more

  • Anniversary | °ÄÃÅÁùºÏ²Ê¸ßÊÖ Document Management system turns 20

    Whatever its nature, every large project generates huge numbers of documents. And when project collaborators operate from different countries, as was the case f [...]

    Read more

Of Interest

See archived entries

Plasma heating

Japan completes gyrotrons

To achieve extreme temperatures in the core of the plasma, °ÄÃÅÁùºÏ²Ê¸ßÊÖ will rely on three external heating systems. One of them—electron cyclotron resonance heating—relies on the electromagnetic-wave-generating power of 24 slim, silver gyrotrons. Gyrotrons have been in development for decades as scientists worked to bring their performance to the levels required at °ÄÃÅÁùºÏ²Ê¸ßÊÖ. Now, high-power, high-frequency gyrotrons are a reality.

Japan's QST Institute (National Institutes for Quantum and Radiological Science and Technology) has manufactured eight high-power microwave sources, called gyrotrons, for °ÄÃÅÁùºÏ²Ê¸ßÊÖ's electron cyclotron resonance heating system. Factory acceptance testing has concluded successfully on the four units that are required for °ÄÃÅÁùºÏ²Ê¸ßÊÖ's First Plasma. These units are ready to ship. (Click to view larger version...)
Japan's QST Institute (National Institutes for Quantum and Radiological Science and Technology) has manufactured eight high-power microwave sources, called gyrotrons, for °ÄÃÅÁùºÏ²Ê¸ßÊÖ's electron cyclotron resonance heating system. Factory acceptance testing has concluded successfully on the four units that are required for °ÄÃÅÁùºÏ²Ê¸ßÊÖ's First Plasma. These units are ready to ship.
Of the 24 required gyrotrons, Japan has been tasked by the °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization with fabricating 8. The National Institutes for Quantum and Radioactive Science and Technology (QST) and Canon Electron Tubes & Devices Co., Ltd. (CETD) have completed the full manufacturing scope, and the four gyrotrons required for installation before First Plasma have passed all testing.

QST and CETD began the research and development of gyrotrons in 1993, and by 2008 they had developed the world's first gyrotron satisfying °ÄÃÅÁùºÏ²Ê¸ßÊÖ's power requirements. After further adjustments to increase the durability of the gyrotrons, manufacturing began and the eight devices assigned to Japan were completed in May 2021.

Before the gyrotrons can be shipped to France, they must undergo rigorous performance tests. The gyrotron must withstand prolonged use under intense conditions and generate enough power to heat the plasma and maintain efficiency. Gyrotron testing at °ÄÃÅÁùºÏ²Ê¸ßÊÖ requires electrical efficiency of more than 50% (50% of input electric energy converted to electromagnetic-wave power), and the success rate of repeated gyrotron operation must be at least 90%.

Now that four of Japan's gyrotrons have passed testing, plans are being made to transport them from their nests at QST to the °ÄÃÅÁùºÏ²Ê¸ßÊÖ complex. The ultimate goal is to have all eight gyrotrons on site by 2024.

Once the gyrotrons arrive, they will be installed as part of the electron cyclotron resonance heating (ECRH) system, one of three methods (alongside neutral beam injection and ion cyclotron heating) °ÄÃÅÁùºÏ²Ê¸ßÊÖ will use to heat plasma to its required temperature. ECRH works by heating electrons through intense beams of electromagnetic radiation, which can be directed to heat specific areas of plasma as needed.

The gyrotrons wait in their boxes now, cool and silent in their dormancy. But soon, as pieces of the °ÄÃÅÁùºÏ²Ê¸ßÊÖ machine come together, they will hum with energy and ignite First Plasma.

Please see the original press release in Japanese.

Read more about the °ÄÃÅÁùºÏ²Ê¸ßÊÖ gyrotrons here.



return to the latest published articles