Your email address will only be used for the purpose of sending you the °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization publication(s) that you have requested. °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization. modification test
​For decades, controlled nuclear fusion has held the promise of a safe, clean, sustainable energy source that could help wean the world from fossil fuels. But the challenges of harnessing the power of the sun in an Earth-based nuclear fusion reactor have been many, with much of the progress over the last several years coming in incremental advances.
One of the key technical issues that has puzzled physicists is actually a common occurrence in fusion reactions: plasma turbulence. Turbulence inside a reactor can increase the rate of plasma heat loss, significantly impacting the resulting energy output. So researchers have been working to pinpoint both what causes this turbulence and how to control or even eliminate it.
Now simulations run at the National Energy Research Scientific Computing Center (NERSC) have shed light on a central piece of the puzzle: the relationship between fast ion particles in the plasma and plasma microturbulence.