°ÄÃÅÁùºÏ²Ê¸ßÊÖ

Lettres d'information

Choisissez ce que vous souhaitez recevoir :

Merci de renseigner votre adresse de messagerie électronique :

@

Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization auxquelles vous êtes abonné. °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.

Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization.

Pour plus d'information, veuillez consulter notre Politique de confidentialité.

°ÄÃÅÁùºÏ²Ê¸ßÊÖ, c'est quoi ?

°ÄÃÅÁùºÏ²Ê¸ßÊÖ, c'est quoi ?

En bref

 (Click to view larger version...)
°ÄÃÅÁùºÏ²Ê¸ßÊÖ (en latin le « chemin ») est l'un des projets les plus ambitieux au monde dans le domaine de l'énergie.
 
En France, dans le département des Bouches-du-Rhône, 35 pays* sont engagés dans la construction du plus grand tokamak jamais conçu, une machine qui doit démontrer que la fusion — l'énergie du Soleil et des étoiles — peut être utilisée comme source d'énergie à grande échelle, non émettrice de CO2, pour produire de l'électricité.
 
Les résultats du programme scientifique d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ seront décisifs pour ouvrir la voie aux centrales de fusion électrogènes de demain.
 
L'objectif principal d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ est de générer des « plasmas en combustion », et d'en comprendre le comportement. Dans un plasma en combustion, l'énergie libérée par le noyau d'hélium issu de la réaction de fusion deutérium-tritium est suffisante pour entretenir la température du milieu, réduisant ainsi, voire supprimant totalement le besoin de recourir à des systèmes de chauffage externes. °ÄÃÅÁùºÏ²Ê¸ßÊÖ doit également mettre en Å“uvre et assurer l'intégration de l'ensemble des technologies essentielles au fonctionnement d'un réacteur de fusion industriel (aimants supraconducteurs, télémanipulation en milieu extrême, extraction de puissance, etc.). Le programme doit en outre valider les différents concepts de « modules tritigènes Â» qui permettront aux futurs réacteurs de de produire au sein même de la machinele tritium indispensable à leur fonctionnement.
 
Des milliers d'ingénieurs et de scientifiques ont contribué à la conception d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ depuis que l'idée d'une collaboration internationale sur l'énergie de fusion a été lancée en 1985. Les Membres d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ (la Chine, l'Union européenne, l'Inde, le Japon, la Corée, la Russie et les États-Unis) se sont engagés dans une collaboration pour construire et exploiter l'installation expérimentale °ÄÃÅÁùºÏ²Ê¸ßÊÖ. Un réacteur de démonstration pourra être conçu sur la base de ce retour d'expérience.
 
Nous vous invitons à découvrir le site internet d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ où vous trouverez plus d'information sur la science d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ, la collaboration internationale et l'immense chantier en cours à Saint Paul-lez-Durance (Bouches-du-Rhône).
 
* Mise a jour: septembre 2023. Les pays qui participent au programme °ÄÃÅÁùºÏ²Ê¸ßÊÖ sont : les 27 membres de l'Union européenne + la Chine, l'Inde, le Japon, la Corée, la Russie, et les Etats-Unis. La Suisse et le Royaume-Uni (avant le Brexit) participaient dans le programme à travers la Communauté européenne de l'énergie atomique (Euratom). Aujourd'hui, la Suisse a un statut de « pays tiers non-associé Â»Ã  Euratom et est considéré par l'Europe comme ne participant plus au programme °ÄÃÅÁùºÏ²Ê¸ßÊÖ pour la durée des négotiations. Au mois de septembre 2023 le Royaume Uni a annoncé que le pays ne poursuivait plus une association avec Euratom, mais que sa communauté de fusion chercherait à maintenir et à enrichir ses collaborations internationales, y compris avec °ÄÃÅÁùºÏ²Ê¸ßÊÖ. °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization continue à respecter les contrats en cours avec la Suisse et le Royaume Uni mais ne conclut plus de nouveaux contrats.
 (Click to view larger version...)
La quantité d'énergie de fusion qu'un tokamak peut produire dépend du nombre de réactions de fusion qui se produisent en son cœur. Plus l'enceinte est grande (et donc également le volume de plasma) plus grand sera le potentiel de production d'énergie de fusion.
 
Avec un volume de plasma cinq fois supérieur à celui de la plus grande machine de fusion opérationnelle aujourd'hui, le tokamak °ÄÃÅÁùºÏ²Ê¸ßÊÖ sera un outil expérimental unique, capable de générer des plasmas de longue durée. La machine a été spécifiquement conçue pour :
 
1) Produire des plasmas deutérium-tritium auto-entretenu par des réactions de fusion
La recherche sur la fusion se trouve aujourd'hui au seuil de l'exploration du « plasma en combustion » — un plasma au sein duquel l'énergie générée par les réactions de fusion assure de manière dominante l'entretien de la température du plasma. Les plasmas en combustion d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ produiront beaucoup plus de puissance de fusion et demeureront stables pendant des durées plus longues.
 
2) Générer 500 MW de puissance de fusion dans le plasma
Le record de puissance de fusion produite par une machine à confinement magnétique est détenu par le tokamak européen JET. En 1997, ce tokamak a généré 16 MW de puissance de fusion pour une puissance de chauffage totale de 24 MW. Ce ratio (ou « Q ») de  0,67 devrait être porté à 10 par °ÄÃÅÁùºÏ²Ê¸ßÊÖ â€” 500 MW de puissance de fusion pour une puissance en entrée de 50 MW. °ÄÃÅÁùºÏ²Ê¸ßÊÖ Ã©tant une machine expérimentale qui ne fonctionnera pas de manière continue, l'énergie produite ne sera pas convertie en électricité. Cette étape sera réalisée par la machine qui lui succédera.
 
3) Contribuer à démontrer le fonctionnement intégré des technologies d'une centrale de fusion électrogène
°ÄÃÅÁùºÏ²Ê¸ßÊÖ marque la transition entre les dispositifs de fusion expérimentaux actuels et les démonstrateurs industriels du futur. Avec cette machine de très grande taille, les scientifiques pourront étudier les plasmas dans les conditions qui seront celles d'une centrale de fusion électrogène et tester des technologies telles que le chauffage, le contrôle, le diagnostic, la cryogénie et la télémaintenance.
 
4) Expérimenter la production de tritium
Dans une phase d'exploitation ultérieure, l'une des missions d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ consistera à démontrer la faisabilité de la production de tritium au sein même de l'enceinte à vide. L'inventaire mondial de tritium (utilisé avec le deutérium pour alimenter la réaction de fusion) n'est en aucun cas suffisant pour couvrir les besoins des futures centrales de fusion électrogènes. °ÄÃÅÁùºÏ²Ê¸ßÊÖ offrira l'opportunité unique de tester des maquettes de couvertures « tritigènes » dans l'environnement d'un réacteur de fusion.
 
5) Démontrer la sûreté d'un dispositif de fusion
Une étape importante dans l'histoire de la fusion a été franchie en 2012 quand °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization, après un examen rigoureux de ses dossiers de sûreté, a obtenu l'autorisation de création de l'installation nucléaire °ÄÃÅÁùºÏ²Ê¸ßÊÖ et en est devenu l'opérateur nucléaire. L'un des principaux objectifs d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ est de démontrer que les réactions de fusion qui se produisent au sein du plasma sont sans impact sur les populations et l'environnement.
 (Click to view larger version...)
La fusion est la source d'énergie qui alimente le Soleil et les étoiles. Dans les conditions de pression et de température extrêmes qui règnent au cœur de ces corps stellaires, les noyaux d'hydrogène entrent en collision et fusionnent pour former des atomes d'hélium et libérer de considérables quantités d'énergie au cours de ce processus.
 
De toutes les réactions de fusion possibles, c'est la réaction entre le deutérium et le tritium (deux isotopes de l'hydrogène) qui se révèle la plus accessible en l'état actuel de notre technologie.
 
Dans un tokamak, trois conditions doivent être remplies pour obtenir des réactions de fusion : une température très élevée (de l'ordre de 150 millions de degrés Celsius), une densité de particules suffisante pour produire le plus grand nombre de collisions possibles, et un temps de confinement de l'énergie suffisamment long pour que les collisions se produisent avec la plus grande vitesse possible.
 
Lorsqu'un gaz est porté à très haute température, les atomes se dissocient : les électrons et les noyaux sont séparés les uns des autres et le gaz se transforme en plasma (quatrième état de la matière). C'est dans ce milieu que les noyaux légers peuvent fusionner et générer de l'énergie.
 
Dans un tokamak, des champs magnétiques très puissants sont mis en œuvre pour confiner et contrôler le plasma.
 
Consulter la section Science pour en savoir plus sur la fusion et les plasmas.
Avec l'aimable autorisation de Jamison Daniel, Oak Ridge Leadership Computing Facility (US) (Click to view larger version...)
Avec l'aimable autorisation de Jamison Daniel, Oak Ridge Leadership Computing Facility (US)
On produit de l'électricité en utilisant l'énergie des combustibles fossiles, des réactions de fission nucléaire, ou celle des ressources renouvelables comme l'eau ou le vent. Quelle que soit la source d'énergie, les centrales génèrent de l'électricité en transformant une puissance mécanique, comme la rotation d'une turbine, en puissance électrique. Dans le cas des énergies fossiles et de l'énergie nucléaire, la chaleur produite transforme l'eau de refroidissement en vapeur, laquelle actionne des turbines qui produisent de l'électricité par l'entremise d'un alternateur.

Le tokamak est une machine expérimentale conçue pour exploiter l'énergie de la fusion. Dans l'enceinte d'un tokamak, l'énergie générée par la fusion des noyaux atomiques est absorbée sous forme de chaleur par les parois de la chambre à vide. Tout comme les centrales électrogènes classiques, une centrale de fusion utilise cette chaleur pour produire de la vapeur, puis, grâce à des turbines et à des alternateurs, de l'électricité.

Le cœur du tokamak est constitué d'une chambre à vide en forme d'anneau. À l'intérieur, sous l'influence d'une température et d'une pression extrêmes, le gaz d'hydrogène se mue en plasma — le milieu dans lequel les atomes d'hydrogène peuvent fusionner et générer de l'énergie. (Pour en savoir plus sur cet état particulier de la matière, cliquez ici.)

Les particules qui composent le plasma, électriquement chargées, peuvent être confinées et contrôlées par les imposantes bobines magnétiques placées autour de l'enceinte. On tire parti de cette propriété pour maintenir le plasma chaud à l'écart des parois de l'enceinte. Le mot « tokamak » est un acronyme russe qui signifie : « chambre toroïdale avec bobines magnétiques ».

La configuration tokamak, conçue par les chercheurs soviétiques au début des années 1950, a été adoptée dans le monde entier comme la plus prometteuse. Avec un volume de plasma six fois plus important que celui du plus grand tokamak en activité °ÄÃÅÁùºÏ²Ê¸ßÊÖ sera, de loin, la plus grande machine de fusion du monde.

Se reporter à la section Machine pour en savoir plus sur le tokamak et ses éléments.

 (Click to view larger version...)
Le programme °ÄÃÅÁùºÏ²Ê¸ßÊÖ est issu d'une collaboration à l'échelle mondiale dans laquelle 35 pays sont engagés.
 
Les membres d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ (la Chine, l'Union européenne (à travers Euratom), l'Inde, le Japon, la Corée, la Russie et les États-Unis) ont mis en commun leurs ressources pour réaliser une grande ambition : reproduire sur Terre l'énergie illimitée qui alimente le Soleil et les étoiles.
 
L'Accord °ÄÃÅÁùºÏ²Ê¸ßÊÖ, conclu par les signataires en 2006, stipule que les sept Membres partagent le coût de la construction, de l'exploitation et du démantèlement de l'installation. Ils partageront également les résultats expérimentaux ainsi que toute propriété intellectuelle générée par la phase d'exploitation.
 
L'Europe assume la plus grande partie du coût de construction (45,6 %) de l'installation; la part restante est assumée de manière égale par la Chine, l'Inde, le Japon, la Corée, la Russie et les États-Unis (9,1 % chacun).
 
La contribution des Membres se fait essentiellement « en nature », sous forme de fourniture de bâtiments, pièces et systèmes à °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization.
 
Les Membres d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ représentent trois continents, plus de 40 langues, la moitié de la population de la planète et 73 % de la production de richesse mondiale. Dans les bureaux d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization à Saint-Paul-lez-Durance (13) ; dans les agences domestiques créées par les Membres d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ ; dans des laboratoires et dans l'industrie des milliers de personnes sont engagées dans le programme °ÄÃÅÁùºÏ²Ê¸ßÊÖ. Sur le site °ÄÃÅÁùºÏ²Ê¸ßÊÖ, des individus de 90 pays sont en train de contribuer à la phase de construction.
 
°ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization a également conclu deux accords de coopération technique avec des pays non-Membres—l'Australie en 2016 (au travers l'agence australienne pour la science et la technologie ANSTO) et le Kazakhstan en 2017 (au travers le centre nucléaire national du Kazakhstan)—ainsi qu'un protocole d'entente avec le Canada (pour explorer les possibilités de coopération), un accord de coopération avec l'Institut de technologie nucléaire thaïlandais, et plus de 70 accords de coopération avec des organisations internationales, des laboratoires nationaux, des universités et des écoles des pays membres. (Une liste complète est publiée à la fin de chaque Rapport Annuel.)
 
Se reporter à la page Membres pour afficher les liens vers les sept agences domestiques.
 (Click to view larger version...)
La construction des bâtiments de l'installation scientifique a débuté au cours de l'été 2010 sur une plateforme de 42 hectares dans les départements des Bouches-du-Rhône. (Voir les pages Construction du site web °ÄÃÅÁùºÏ²Ê¸ßÊÖ.) Les travaux de génie civil du Complexe tokamak—au centre de l'installation—sont menés depuis 2014. C'est dans cet édifice, constitué de trois bâtiments, que se dérouleront les expériences de fusion.
 
Depuis 2020, les équipes d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization procède à l'intégration et à l'assemblage des différents éléments de la machine. L'installation de la base du cryostat, au mois de mai 2020, en a été le premier acte.
 
La réussite de l'intégration et de l'assemblage de plus d'un million de composants (dix millions de pièces) fabriqués dans les usines des Membres d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ dans le monde entier et acheminés vers le site d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ représente un défi logistique et d'ingénierie extraordinaire. Il faut aussi installer les systèmes indispensables à la création du premier plasma : cryogénie, circuit de refroidissement, électricité, alimentation en combustible, systèmes de contrôle, diagnostics, ainsi qu'une partie du système de chauffage à résonance cyclotronique électronique.
 
Toutes les séquences des opérations d'assemblage de la machine qui vont suivre ont été définies et coordonnées avec soin. Des centaines de milliers de tâches, organisées par « lots », ont été minutieusement planifiées. Dans son rôle d'intégrateur global pendant la phase d'assemblage, °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization sera assisté par plusieurs consortiums spécialisés. (Voir les pages Assemblage du site web °ÄÃÅÁùºÏ²Ê¸ßÊÖ.)
 
Mis à jour juillet 2024 : °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization a soumis une feuille de route (baseline) actualisée au Conseil °ÄÃÅÁùºÏ²Ê¸ßÊÖ lors de sa trente-quatrième réunion au mois de juin 2024. La nouvelle feuille de route, qui remplacerait la feuille de route qui sert de référence depuis 2016, a été conçue pour privilégier un démarrage efficace de l'exploitation scientifique. Pour sa phase opérationnelle initiale (Start of Research Operation, ou Démarrage de la phase d'expérimentation), la machine °ÄÃÅÁùºÏ²Ê¸ßÊÖ sera équipée d'un divertor, de modules de couverture ainsi que d'autres éléments et systèmes essentiels. Cette configuration permettra de produire des plasmas d'hydrogène et de deutérium-deutérium et d'aller vers des décharges de longue durée sous une intensité du champ magnétique et avec un courant plasma maximaux. Le nouveau plan prévoit d'atteindre l'intensité magnétique maximale en 2036, avec trois années de retard sur ce qui était anticipé par la feuille de route de 2016, tandis que le démarrage de la phase d'exploitation deutérium-tritium, en 2039, sera différée de quatre ans. L'ensemble de ces propositions, ainsi que leur incidence sur le budget et le calendrier du programme, sera soumis à évaluation. La prochaine réunion du Conseil °ÄÃÅÁùºÏ²Ê¸ßÊÖ se tiendra au mois de novembre 2024. Voir plus de détail sur la proposition ici.
Les grandes étapes d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ

2005          Choix du site de Saint-Paul-lez-Durance (Bouches-du-Rhône)
2006          Signature de l'Accord °ÄÃÅÁùºÏ²Ê¸ßÊÖ
2007          Création d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization
2007-2009  Préparation de la plateforme (déboisement, nivellement)
2008           Début de fabrication industrielle pour la machine °ÄÃÅÁùºÏ²Ê¸ßÊÖ
2010-2014  Fondations du Complex tokamak
2010-2024  Construction de l'installation °ÄÃÅÁùºÏ²Ê¸ßÊÖ (excepté la Cellule Chaude)
2012           Un décret officiel autorise °ÄÃÅÁùºÏ²Ê¸ßÊÖ Organization à créer l'Installation nucléaire de base (INB) °ÄÃÅÁùºÏ²Ê¸ßÊÖ
2015...        Transport (via l'Itinéraire °ÄÃÅÁùºÏ²Ê¸ßÊÖ) et livraison sur site des éléments
2020          L'assemblage du tokamak commence
2023          Bâtiment tokamak: génie civil finalisé
2024          (juin) Présentation de la nouvelle « feuille de route » d'°ÄÃÅÁùºÏ²Ê¸ßÊÖ au Conseil °ÄÃÅÁùºÏ²Ê¸ßÊÖ